• 1
    Simons M, Raposo G. Exosomes – vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21: 57581.
  • 2
    Nieuwland R, Sturk A. Why do cells release vesicles? Thromb Res 2010; 125: S4951.
  • 3
    Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20: 148795.
  • 4
    Jy W, Horstman LL, Jimenez JJ, Ahn YS, Biro E, Nieuwland R, Sturk A, Dignat-George F, Sabatier F, Camoin-Jau L, Sampol J, Hugel B, Zobairi F, Freyssinet JM, Nomura S, Shet AS, Key NS, Hebbel RP. Measuring circulating cell-derived microparticles. J Thromb Haemost 2004; 2: 184251.
  • 5
    Yuana Y, Oosterkamp TH, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, Bertina RM, Osanto S. Atomic force microscopy: a novel approach to detect nanosized blood microparticles. J Thromb Haemost 2009; 8: 31523.
  • 6
    Lawrie AS, Albanyan A, Cardigan RA, Mackie IJ, Harrison P. Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang 2009; 96: 20612.
  • 7
    Kang DJ, Oh S, Ahn SM, Lee BH, Moon MH. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J Proteome Res 2008; 7: 347580.
  • 8
    Perez-Pujol S, Marker PH, Key NS. Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer. Cytometry A 2007; 71: 3845.
  • 9
    Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, Furie B. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 2009; 15: 683040.
  • 10
    Couzin J. Cell biology: the ins and outs of exosomes. Science 2005; 308: 18623.
  • 11
    Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 2009; 101: 43951.
  • 12
    Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu SC, Mato JM, Falcon-Perez JM. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 2008; 7: 515766.
  • 13
    Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; Ch 3: Unit 3.22.
  • 14
    Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2: 56979.
  • 15
    Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9: 58193.
  • 16
    Freyssinet JM. Cellular microparticles: what are they bad or good for? J Thromb Haemost 2003; 1: 165562.
  • 17
    Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009; 19: 4351.
  • 18
    Sims PJ, Faioni EM, Wiedmer T, Shattil SJ. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 1988; 263: 1820512.
  • 19
    Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, Maquelin KN, Roozendaal KJ, Jansen PG, Ten Have K, Eijsman L, Hack CE, Sturk A. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 1997; 96: 353441.
  • 20
    Giesen PL, Rauch U, Bohrmann B, Kling D, Roque M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 231115.
  • 21
    Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 1989; 264: 1704957.
  • 22
    Nieuwland R, Berckmans RJ, McGregor S, Boing AN, Romijn FP, Westendorp RG, Hack CE, Sturk A. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 2000; 95: 9305.
  • 23
    Biro E, Sturk-Maquelin KN, Vogel GM, Meuleman DG, Smit MJ, Hack CE, Sturk A, Nieuwland R. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost 2003; 1: 25618.
  • 24
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 6549.
  • 25
    Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007; 110: 24408.
  • 26
    Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10: 61924.
  • 27
    De Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M. Lipid raft-associated protein sorting in exosomes. Blood 2003; 102: 433644.
  • 28
    Abid Hussein MN, Nieuwland R, Hau CM, Evers LM, Meesters EW, Sturk A. Cell-derived microparticles contain caspase 3 in vitro and in vivo. J Thromb Haemost 2005; 3: 88896.
  • 29
    Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, Howell SB. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 2005; 4: 1595604.
  • 30
    Van Beers EJ, Schaap MC, Berckmans RJ, Nieuwland R, Sturk A, Van Doormaal FF, Meijers JC, Biemond BJ. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 2009; 94: 151319.
  • 31
    Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS, Hebbel RP. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003; 102: 267883.
  • 32
    Siedlecki CA, Wang IW, Higashi JM, Kottke-Marchant K, Marchant RE. Platelet-derived microparticles on synthetic surfaces observed by atomic force microscopy and fluorescence microscopy. Biomaterials 1999; 20: 15219.
  • 33
    Robert S, Poncelet P, Lacroix R, Arnaud L, Giraudo L, Hauchard A, Sampol J, Dignat-George F. Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J Thromb Haemost 2009; 7: 1907.
  • 34
    Shah MD, Bergeron AL, Dong JF, Lopez JA. Flow cytometric measurement of microparticles: pitfalls and protocol modifications. Platelets 2008; 19: 36572.
  • 35
    Mullier F, Dogné JM, Bailly N, Cornet Y, Robert S, Chatelain B. Accurate quantification of microparticles by flow cytometry: important issues. J Thromb Haemost 2009; 7 (Suppl. 2): PP-MO-040.
  • 36
    Harrison P, Dragovic R, Albanyan A, Lawrie AS, Murphy M, Sargent I. Application of dynamic light scattering to the measurement of microparticles. J Thromb Haemost 2009; 7 (Suppl. 2): OC-TU-056.
  • 37
    Van De Hulst HC. Light Scattering by Small Particles. New York: Wiley, 1957.
  • 38
    Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles. New York, NY: Wiley, 1983.
  • 39
    Van Dijk MA, Lippitz M, Orrit M. Far-field optical microscopy of single metal nanoparticles. Acc Chem Res 2005; 38: 594601.
  • 40
    Hoekstra A, Maltsev V, Videen G. Optics of Biological Particles. Dordrecht, The Netherlands: Springer, 2007.
  • 41
    Hoekstra AG, Sloot PMA. Biophysical and biomedical applications of non-spherical scattering. In: MishchenkoMI, HovenierJW, TravisLD, eds. Light Scattering by Nonspherical Particles, Theory, Measurements, and Applications. San Diego, CA: Academic Press, 2000: 585602.
  • 42
    Steen HB. Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles. Cytometry A 2004; 57: 949.
  • 43
    Faber DJ, Aalders MCG, Mik EG, Hooper BA, Van Gemert MJC, Van Leeuwen TG. Oxygen saturation-dependent absorption and scattering of blood. Phys Rev Lett 2004; 93: 28102-128102-4.
  • 44
    Ungureanu C, Rayavarapu RG, Manohar S, Van Leeuwen TG. Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment. J Appl Phys 2009; 105: 102032-1102032-7.
  • 45
    De Grooth BG, Terstappen LW, Puppels GJ, Greve J. Light-scattering polarization measurements as a new parameter in flow cytometry. Cytometry 1987; 8: 53944.
  • 46
    Clark NA, Lunacek JH, Benedek GB. A study of Brownian motion using light scattering. Am J Phys 1970; 38: 57585.
  • 47
    Dieckmann Y, Colfen H, Hofmann H, Petri-Fink A. Particle size distribution measurements of manganese-doped ZnS nanoparticles. Anal Chem 2009; 81: 388995.
  • 48
    Bryant G, Thomas JC. Improved particle-size distribution measurements using multiangle dynamic light-scattering. Langmuir 1995; 11: 24805.
  • 49
    Filella M, Zhang JW, Newman ME, Buffle J. Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Colloids Surf A Physicochem Eng Asp 1997; 120: 2746.
  • 50
    Hoo CM, Starostin N, West P, Mecartney ML. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res 2008; 10: 8996.
  • 51
    Korgel BA, Van Zanten JH, Monbouquette HG. Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering. Biophys J 1998; 74: 326472.
  • 52
    Puppels GJ, De Mul FF, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, Jovin TM. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 1990; 347: 3013.
  • 53
    Uzunbajakava N, Lenferink A, Kraan Y, Volokhina E, Vrensen G, Greve J, Otto C. Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys J 2003; 84: 396881.
  • 54
    Puppels GJ, Colier W, Olminkhof JHF, Otto C, Demul FFM, Greve J. Description and performance of a highly sensitive confocal Raman microspectrometer. J Raman Spectrosc 1991; 22: 21725.
  • 55
    Pully V, Lenferink A, Otto C. Time-lapse Raman imaging of single live lymphocytes. J Raman Spectrosc 2010: doi 10.1002/jrs 2683.
  • 56
    McCarthy DA. Fluorochromes and fluorescence. In: MaceyMG, ed. Flow Cytometry: Principles and Applications. New York: Humana Press, 2007: 59112.
  • 57
    Zhang Q, Li YL, Tsien RW. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 2009; 323: 144853.
  • 58
    Van Manen HJ, Verkuijlen P, Wittendorp P, Subramaniam V, Van Den Berg TK, Roos D, Otto C. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy. Biophys J 2008; 94: L679.
  • 59
    Blum C, Cesa Y, Van Den Broek JM, Mosk AP, Vos WL, Subramaniam V. Controlling fluorescent proteins by manipulating the local density of photonic states. Proc SPIE 2009; 7367: 73670C-C-9.
  • 60
    Radbruch A. Flow Cytometry and Cell Sorting. New York: Springer, 2000.
  • 61
    Haugland RP, Spence MTZ, Johnson ID. The Handbook: A Guide to Fluorescent Probes and Labeling Technologies. Molecular Probes. Stockton, CA, FatCityBooks, 2005.
  • 62
    Baumgarth N, Roederer M. A practical approach to multicolor flow cytometry for immunophenotyping. J Immunol Methods 2000; 243: 7797.
  • 63
    Westphal V, Hell SW. Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 2005; 94: 143903-1143903-4.
  • 64
    Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006; 440: 9359.
  • 65
    Hein B, Willig KI, Hell SW. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci USA 2008; 105: 142716.
  • 66
    Ferris MM, Rowlen KL. Detection and enumeration of single nanometric particles: a confocal optical design for fluorescence flow cytometry. Rev Sci Instrum 2002; 73: 240410.
  • 67
    Webb WW. Applications of fluorescence correlation spectroscopy. Q Rev Biophys 1976; 9: 4968.
  • 68
    Starchev K, Buffle J, Perez E. Applications of fluorescence correlation spectroscopy: polydispersity measurements. J Colloid Interf Sci 1999; 213: 47987.
  • 69
    Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 2004; 101: 1336873.
  • 70
    Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986; 56: 9303.
  • 71
    Ito T, Sun L, Henriquez RR, Crooks RM. A carbon nanotube-based coulter nanoparticle counter. Acc Chem Res 2004; 37: 93745.
  • 72
    Pully VV, Lenferink A, Otto C. Hybrid Rayleigh, Raman and two-photon excited fluorescence spectral confocal microscopy of living cells. J Raman Spectrosc 2009; 41: 599608.
  • 73
    Van Apeldoorn AA, Aksenov Y, Stigter M, Hofland I, De Bruijn JD, Koerten HK, Otto C, Greve J, Van Blitterswijk CA. Parallel high-resolution confocal Raman SEM analysis of inorganic and organic bone matrix constituents. J R Soc Interface 2005; 2: 3945.
  • 74
    Faber DJ, Van Der Meer FJ, Aalders MCG. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. Opt Express 2004; 12: 435365.
  • 75
    Patil CA, Bosschaart N, Keller MD, Van Leeuwen TG, Mahadevan-Jansen A. Combined Raman spectroscopy and optical coherence tomography device for tissue characterization. Opt Lett 2008; 33: 11357.
  • 76
    Stavis SM, Edel JB, Samiee KT, Craighead HG. Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab Chip 2005; 88: 33743.
  • 77
    Saleh OA, Sohn LL. Quantitative sensing of nanoscale colloids using a microchip Coulter counter. Rev Sci Instrum 2001; 72: 444951.
  • 78
    Freyssinet JM, Toti F. Membrane microparticle determination: at least seeing what’s being sized! J Thromb Haemost 2009; 8: 31114.