• 1
    Peoc’h K, Pruvot S, Gourmel C, Dit Sollier CB, Drouet L. A new VKORC1 mutation leading to an isolated resistance to fluindione. Br J Haematol 2009; 145: 8413.
  • 2
    Palareti G, Manotti C, A DA, Pengo V, Erba N, Moia M, Ciavarella N, Devoto G, Berrettini M, Leali N, Poggi M, Legnani C, Musolesi S, Coccheri S. Thrombotic events during oral anticoagulant treatment: results of the inception-cohort, prospective, collaborative ISCOAT study: ISCOAT study group (Italian Study on Complications of Oral Anticoagulant Therapy). Thromb Haemost 1997; 78: 143843.
  • 3
    Fregin A, Rost S, Wolz W, Krebsova A, Muller CR, Oldenburg J. Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16. Blood 2002; 100: 322932.
  • 4
    Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Muller CR, Strom TM, Oldenburg J. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 53741.
  • 5
    Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature 2004; 427: 5414.
  • 6
    Oldenburg J, Bevans CG, Muller CR, Watzka M. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle. Antioxid Redox Signal 2006; 8: 34753.
  • 7
    Chu PH, Huang TY, Williams J, Stafford DW. Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH2. Proc Natl Acad Sci USA 2006; 103: 1930813.
  • 8
    Whitlon DS, Sadowski JA, Suttie JW. Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry 1978; 17: 13717.
  • 9
    Fasco MJ, Principe LM, Walsh WA, Friedman PA. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. Biochemistry 1983; 22: 565560.
  • 10
    MacNicoll AD, Dean RH. Warfarin inhibition of hepatic vitamin K epoxide reductase activity in warfarin-susceptible and -resistant house mice (Mus domesticus). Pestic Biochem Physiol 1992; 44: 6873.
  • 11
    Oldenburg J, Watzka M, Rost S, Muller CR. VKORC1: molecular target of coumarins. J Thromb Haemost 2007; 5(Suppl. 1): 16.
  • 12
    Wilkinson TJ, Sainsbury R. Evaluation of a warfarin initiation protocol for older people. Intern Med J 2003; 33: 4657.
  • 13
    Kamali F, Khan TI, King BP, Frearson R, Kesteven P, Wood P, Daly AK, Wynne H. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther 2004; 75: 20412.
  • 14
    Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med 2005; 7: 97104.
  • 15
    Oldenburg J, Bevans CG, Fregin A, Geisen C, Muller-Reible C, Watzka M. Current pharmacogenetic developments in oral anticoagulation therapy: the influence of variant VKORC1 and CYP2C9 alleles. Thromb Haemost 2007; 98: 5708.
  • 16
    Loebstein R, Dvoskin I, Halkin H, Vecsler M, Lubetsky A, Rechavi G, Amariglio N, Cohen Y, Ken-Dror G, Almog S, Gak E. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 2007; 109: 247780.
  • 17
    Harrington DJ, Gorska R, Wheeler R, Davidson S, Murden S, Morse C, Shearer MJ, Mumford AD. Pharmacodynamic resistance to warfarin is associated with nucleotide substitutions in VKORC1. J Thromb Haemost 2008; 6: 166370.
  • 18
    Wilms EB, Touw DJ, Conemans JM, Veldkamp R, Hermans M. A new VKORC1 allelic variant – p.Trp59Arg – in a patient with partial resistance to acenocoumarol and phenprocoumon. J Thromb Haemost 2008; 6: 12246.
  • 19
    Bodin L, Perdu J, Diry M, Horellou MH, Loriot MA. Multiple genetic alterations in vitamin K epoxide reductase complex subunit 1 gene (VKORC1) can explain the high dose requirement during oral anticoagulation in humans. J Thromb Haemost 2008; 6: 14369.
  • 20
    Ainle FN, Mumford A, Tallon E, McCarthy D, Murphy K. A vitamin K epoxide reductase complex subunit 1 mutation in an Irish patient with warfarin resistance. Ir J Med Sci 2008; 177: 15961.
  • 21
    Aklillu E, Leong C, Loebstein R, Halkin H, Gak E. VKORC1 Asp36Tyr warfarin resistance marker is common in Ethiopian individuals. Blood 2008; 111: 39034.
  • 22
    Bodin L, Horellou MH, Flaujac C, Loriot MA, Samama MM. A vitamin K epoxide reductase complex subunit-1 (VKORC1) mutation in a patient with vitamin K antagonist resistance. J Thromb Haemost 2005; 3: 15335.
  • 23
    D’Ambrosio RL, D’Andrea G, Cafolla A, Faillace F, Margaglione M. A new vitamin K epoxide reductase complex subunit-1 (VKORC1) mutation in a patient with decreased stability of CYP2C9 enzyme. J Thromb Haemost 2007; 5: 1913.
  • 24
    Harrington DJ, Underwood S, Morse C, Shearer MJ, Tuddenham EG, Mumford AD. Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1. Thromb Haemost 2005; 93: 236.
  • 25
    Osman A, Enstrom C, Arbring K, Soderkvist P, Lindahl TL. Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records. J Thromb Haemost 2006; 4: 17239.
  • 26
    Schmeits PC, Hermans MH, van Geest-Daalderop JH, Poodt J, de Sauvage Nolting PR, Conemans JM. VKORC1 mutations in patients with partial resistance to phenprocoumon. Br J Haematol 2009; 148: 9557.
  • 27
    Scott SA, Edelmann L, Kornreich R, Desnick RJ. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet 2008; 82: 495500.
  • 28
    Geisen C, Watzka M, Sittinger K, Steffens M, Daugela L, Seifried E, Muller CR, Wienker TF, Oldenburg J. VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 2005; 94: 7739.
  • 29
    Schalekamp T, Brasse BP, Roijers JF, van Meegen E, van der Meer FJ, van Wijk EM, Egberts AC, de Boer A. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 2007; 81: 18593.
  • 30
    van Leeuwen Y, Rosendaal FR, van der Meer FJ. The relationship between maintenance dosages of three vitamin K antagonists: acenocoumarol, warfarin and phenprocoumon. Thromb Res 2008; 123: 22530.
  • 31
    D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005; 105: 6459.
  • 32
    Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352: 228593.
  • 33
    Moyer TP, O’Kane DJ, Baudhuin LM, Wiley CL, Fortini A, Fisher PK, Dupras DM, Chaudhry R, Thapa P, Zinsmeister AR, Heit JA. Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clin Proc 2009; 84: 107994.
  • 34
    Lacut K, Verstuyft C, Gourhant L, Poulhazan E, Becquemont L, Mottier D. Effects of cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes on fluindione anticoagulation status. J Thromb Haemost 2009; 7: Abstract PP-WE-186.
  • 35
    Li W, Schulman S, Dutton RJ, Boyd D, Beckwith J, Rapoport TA. Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 2010; 463: 50712.
  • 36
    Tie JK, Nicchitta C, von Heijne G, Stafford DW. Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation. J Biol Chem 2005; 280: 1641016.
  • 37
    Schulman S, Wang B, Li W, Rapoport TA. Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners. Proc Natl Acad Sci USA 2010; 107: 1502732.
  • 38
    Jin DY, Tie JK, Stafford DW. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines. Biochemistry 2007; 46: 727983.
  • 39
    Rost S, Fregin A, Hunerberg M, Bevans CG, Muller CR, Oldenburg J. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin. Thromb Haemost 2005; 94: 7806.
  • 40
    Ma Q, Cui K, Xiao F, Lu AY, Yang CS. Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis. J Biol Chem 1992; 267: 22298304.
  • 41
    Myszka DG, Swenson RP. Identification by photoaffinity labeling of fatty acid-binding protein as a potential warfarin receptor in rat liver. J Biol Chem 1991; 266: 2072531.
  • 42
    Lasseur R, Longin-Sauvageon C, Videmann B, Billeret M, Berny P, Benoit E. Warfarin resistance in a French strain of rats. J Biochem Mol Toxicol 2005; 19: 37985.
  • 43
    Lasseur R, Longin-Sauvageon C, Berny P, Benoit E. Biochemistry of resistance to warfarin in a French strain of the Norway rat (Rattus norvegicus). Int J Pest Manage 2007; 53: 27380.
  • 44
    Lasseur R, Grandemange A, Longin-Sauvageon C, Berny P, Benoit E. Heterogeneity of the coumarin anticoagulant targeted vitamin K epoxide reduction system. Study of kinetic parameters in susceptible and resistant mice (Mus musculus domesticus). J Biochem Mol Toxicol 2006; 20: 2219.
  • 45
    Rost S, Pelz HJ, Menzel S, MacNicoll AD, Leon V, Song KJ, Jakel T, Oldenburg J, Muller CR. Novel mutations in the VKORC1 gene of wild rats and mice – a response to 50 years of selection pressure by warfarin? BMC Genet 2009; 10: 4.
  • 46
    Hermodson MA, Suttie JW, Link KP. Warfarin metabolism and vitamin K requirement in the warfarin-resistant rat. Am J Physiol 1969; 217: 131619.
  • 47
    Fasco MJ, Preusch PC, Hildebrandt E, Suttie JW. Formation of hydroxyvitamin K by vitamin K epoxide reductase of warfarin-resistant rats. J Biol Chem 1983; 258: 437280.
  • 48
    Hildebrandt EF, Preusch PC, Patterson JL, Suttie JW. Solubilization and characterization of vitamin K epoxide reductase from normal and warfarin-resistant rat liver microsomes. Arch Biochem Biophys 1984; 228: 48092.
  • 49
    Preusch PC, Suttie JW. Formation of 3-hydroxy-2,3-dihydrovitamin K1 in vivo: relationship to vitamin K epoxide reductase and warfarin resistance. J Nutr 1984; 114: 90210.
  • 50
    Preusch PC, Suttie JW. Lapachol inhibition of vitamin K epoxide reductase and vitamin K quinone reductase. Arch Biochem Biophys 1984; 234: 40512.
  • 51
    Silverman RB. Chemical model studies for the mechanism of vitamin K epoxide reductase. J Am Chem Soc 1980; 103: 593941.
  • 52
    Preusch PC, Suttie JW. A chemical model for the mechanism of vitamin K epoxide reductase. J Org Chem 1983; 48: 33015.
  • 53
    Silverman RB. A model for a molecular mechanism of anticoagulant activity of 3-substituted 4-hydroxycoumarins. J Am Chem Soc 1980; 102: 54213.
  • 54
    Suttie JW, Preusch PC. Studies of the vitamin K-dependent carboxylase and vitamin K epoxide reductase in rat liver. Haemostasis 1986; 16: 193215.