• 1
    Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004; 103: 2096104.
  • 2
    Yeaman MR, Bayer AS, Koo SP, Foss W, Sullam PM. Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J Clin Invest 1998; 101: 17887.
  • 3
    Yeaman MR. Bacterial–platelet interactions: virulence meets host defense. Future Microbiol 2010; 5: 471506.
  • 4
    Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 2006; 4: 44557.
  • 5
    Beynon RP, Bahl VK, Prendergast BD. Infective endocarditis. BMJ 2006; 333: 3349.
  • 6
    Li Z, Yang F, Dunn S, Gross AK, Smyth SS. Platelets as immune mediators: their role in host defense responses and sepsis. Thromb Res 2011; 127: 1848.
  • 7
    Kitchens CS. Thrombocytopenia and thrombosis in disseminated intravascular coagulation (DIC). Hematology 2009; 2406.
  • 8
    Vandijck DM, Blot SI, De Waele JJ, Hoste EA, Vandewoude KH, Decruyenaere JM. Thrombocytopenia and outcome in critically ill patients with bloodstream infection. Heart Lung: J Acute Crit Care. 2010; 39: 216.
  • 9
    Bennett JS. Structure and function of the platelet integrin αIIbβ3. J Clin Invest 2005; 115: 33639.
  • 10
    Josefsson E, McCrea KW, Eidhin DN, O’Connell D, Cox J, Hook M, Foster TJ. Three new members of the serine–aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 1998; 144: 338795.
  • 11
    McDevitt D, Francois P, Vaudaux P, Foster TJ. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 1994; 11: 23748.
  • 12
    Ni Eidhin D, Perkins S, Francois P, Vaudaux P, Hook M, Foster T. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 1998; 30: 24557.
  • 13
    Flock J, Fröman G, Jönsson K, Guss B, Signäs C, Nilsson B, Raucci G, Höök M, Wadström T, Lindberg M. Cloning and expression of the gene for a fibronectin-binding protein from Staphylococcus aureus. EMBO J 1987; 6: 23517.
  • 14
    Mitchell J, Tristan A, Foster TJ. Characterization of the fibrinogen-binding surface protein Fbl of Staphylococcus lugdunensis. Microbiology 2004; 150: 383141.
  • 15
    Brennan MP, Loughman A, Devocelle M, Arasu S, Chubb AJ, Foster TJ, Cox D. Elucidating the role of Staphylococcus epidermidis serine–aspartate repeat protein G in platelet activation. J Thromb Haemost 2009; 7: 136472.
  • 16
    Rivera J, Vannakambadi G, Höök M, Speziale P. Fibrinogen-binding proteins of Gram-positive bacteria. Thromb Haemost 2007; 98: 50311.
  • 17
    Geoghegan JA, Ganesh VK, Smeds E, Liang X, Höök M, Foster TJ. Molecular characterization of the interaction of staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMM) ClfA and Fbl with fibrinogen. J Biol Chem 2010; 285: 620816.
  • 18
    Walsh E, Miajlovic H, Gorkun O, Foster T. Identification of the Staphylococcus aureus MSCRAMM clumping factor B (ClfB) binding site in the α C-domain of human fibrinogen. Microbiology 2008; 154: 5508.
  • 19
    Davis SL, Gurusiddappa S, McCrea KW, Perkins S, Höök M. SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bβ chain. J Biol Chem 2001; 276: 27799805.
  • 20
    Fitzgerald JR, Loughman A, Keane F, Brennan M, Knobel M, Higgins J, Visai L, Speziale P, Cox D, Foster TJ. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. Mol Microbiol 2006; 59: 21230.
  • 21
    Shannon O, Hertzen E, Norrby-Teglund A, Morgelin M, Sjobring U, Bjorck L. Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol Microbiol 2007; 65: 114757.
  • 22
    Seo HS, Xiong YQ, Mitchell J, Seepersaud R, Bayer AS, Sullam PM. Bacteriophage lysin mediates the binding of Streptococcus mitis to human platelets through interaction with fibrinogen. PLoS Pathog 2010; 6: e1001047.
  • 23
    Miajlovic H, Zapotoczna M, Geoghegan J, Kerrigan S, Speziale P, Foster T. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 2010; 156: 9208.
  • 24
    Petersen HJ, Keane C, Jenkinson HF, Vickerman MM, Jesionowski A, Waterhouse JC, Cox D, Kerrigan SW. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun 2010; 78: 41322.
  • 25
    Clemetson K, Clemetson J. Platelet GPIb complex as a target for anti-thrombotic drug development. Thromb Haemost 2008; 99: 4739.
  • 26
    Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Douglas CW. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol 2005; 129: 1019.
  • 27
    Bensing BA, Lopez JA, Sullam PM. The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibα. Infect Immun 2004; 72: 652837.
  • 28
    Jakubovics NS, Kerrigan SW, Nobbs AH, Stromberg N, van Dolleweerd CJ, Cox DM, Kelly CG, Jenkinson HF. Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun 2005; 73: 662938.
  • 29
    Takamatsu D, Bensing BA, Cheng H, Jarvis GA, Siboo IR, Lopez JA, Griffiss JM, Sullam PM. Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol 2005; 58: 38092.
  • 30
    Kerrigan SW, Jakubovics NS, Keane C, Maguire P, Wynne K, Jenkinson HF, Cox D. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun 2007; 75: 57407.
  • 31
    Siboo IR, Chambers HF, Sullam PM. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 2005; 73: 227380.
  • 32
    O’Seaghdha M, van Schooten CJ, Kerrigan SW, Emsley J, Silverman GJ, Cox D, Lenting PJ, Foster TJ. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBS J 2006; 273: 483141.
  • 33
    Byrne MF, Kerrigan SW, Corcoran PA, Atherton JC, Murray FE, Fitzgerald DJ, Cox DM. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology 2003; 124: 184654.
  • 34
    Armant M, Fenton M. Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol 2002; 3: reviews3011.1 – reviews.6.
  • 35
    Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 2005; 83: 1968.
    Direct Link:
  • 36
    Aslam R, Speck ER, Kim M, Crow AR, Bang KWA, Nestel FP, Ni H, Lazarus AH, Freedman J, Semple JW. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-{alpha} production in vivo. Blood 2006; 107: 63741.
  • 37
    David EH, Jeremy AY, Chris W. Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 1998; 30: 22132.
  • 38
    Kuckleburg C, McClenahan D, Czuprynski C. Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization. Shock 2008; 29: 18996.
  • 39
    Stahl A, Sartz L, Nelsson A, Bekassy Z, Karpman D. Shiga toxin and lipopolysaccharide induce platelet–leukocyte aggregates and tissue factor release, a thrombotic mechanism in hemolytic uremic syndrome. PLoS ONE 2009; 4: e6990.
  • 40
    Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, Garraud O. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 2008; 141: 8491.
  • 41
    Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 2009; 182: 79978004.
  • 42
    Ward JR, Bingle L, Judge HM, Brown SB, Storey RF, Whyte MK, Dower SK, Buttle DJ, Sabroe I. Agonists of Toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thromb Haemost 2005; 94: 8318.
  • 43
    Hashimoto K, Jayachandran M, Owen W, Miller V. Aggregation and microparticle production through Toll-like receptor 4 activation in platelets from recently menopausal women. J Cardiovasc Pharmacol 2009; 54: 5762.
  • 44
    Morganti RP, Cardoso MHM, Pereira FG, Lorand-Metze I, Nucci GD, Marcondes S, Antunes E. Mechanisms underlying the inhibitory effects of lipopolysaccharide on human platelet adhesion. Platelets 2010; 21: 2609.
  • 45
    Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13: 4639.
  • 46
    Andonegui G, Kerfoot SM, McNagny K, Ebbert KVJ, Patel KD, Kubes P. Platelets express functional Toll-like receptor-4. Blood 2005; 106: 241723.
  • 47
    Semple JW, Aslam R, Kim M, Speck ER, Freedman J. Platelet-bound lipopolysaccharide enhances Fc receptor mediated phagocytosis of IgG-opsonized platelets. Blood 2007; 109: 48035.
  • 48
    Lutgens E, Lievens D, Beckers L, Donners M, Daemen M. CD40 and its ligand in atherosclerosis. Trends Cardiovasc Med 2007; 17: 11823.
  • 49
    Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix IC, Wijnands E, Goossens P, van Kruchten R, Thevissen L, Boon L, Flavell RA, Noelle RJ, Gerdes N, Biessen EA, Daemen MJ, Heemskerk JW, Weber C, Lutgens E. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116: 431727.
  • 50
    Cognasse F, Lafarge S, Chavarin P, Acquart S, Garraud O. Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9. Intensive Care Med 2007; 33: 3824.
  • 51
    Stahl A-L, Svensson M, Morgelin M, Svanborg C, Tarr PI, Mooney JC, Watkins SL, Johnson R, Karpman D. Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 2006; 108: 16776.
  • 52
    Morath S, von Aulock S, Hartung T. Structure/function relationships of lipoteichoic acids. J Endotoxin Res 2005; 11: 34856.
  • 53
    Chugh TD, Burns GJ, Shuhaiber HJ, Bahr GM. Adherence of Staphylococcus epidermidis to fibrin-platelet clots in vitro mediated by lipoteichoic acid. Infect Immun 1990; 58: 31519.
  • 54
    Blair P, Rex S, Vitseva O, Beaulieu L, Tanriverdi K, Chakrabarti S, Hayashi C, Genco CA, Iafrati M, Freedman JE. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104: 34654.
  • 55
    Kälvegren H, Skoglund C, Helldahl C, Lerm M, Grenegård M, Bengtsson T. Toll-like receptor 2 stimulation of platelets is mediated by purinergic P2X1-dependent Ca2+ mobilisation, cyclooxygenase and purinergic P2Y1 and P2Y12 receptor activation. Thromb Haemost 2010; 103: 398407.
  • 56
    Keane C, Tilley D, Cunningham A, Smolenski A, Kadioglu A, Cox D, Jenkinson HF, Kerrigan SW. Invasive Streptococcus pneumoniae trigger platelet activation via Toll-like receptor 2. J Thromb Haemost 2010; 8: 275765.
  • 57
    Sheu JR, Lee CR, Lin CH, Hsiao G, Ko WC, Chen YC, Yen MH. Mechanisms involved in the antiplatelet activity of Staphylococcus aureus lipoteichoic acid in human platelets. Thromb Haemost 2000; 83: 77784.
  • 58
    Garraud O, Cognasse F. Platelet Toll-like receptor expression: the link between ‘danger’ ligands and inflammation. Inflamm Allergy Drug Targets 2010; 9: 32233.
  • 59
    Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11: 78597.
  • 60
    Ford I, Douglas CW, Heath J, Rees C, Preston FE. Evidence for the involvement of complement proteins in platelet aggregation by Streptococcus sanguis NCTC 7863. Br J Haematol 1996; 94: 72939.
  • 61
    Ford I, Douglas CW, Cox D, Rees DG, Heath J, Preston FE. The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. Br J Haematol 1997; 97: 73746.
  • 62
    Peerschke EI, Ghebrehiwet B. Human blood platelet gC1qR/p33. Immunol Rev 2001; 180: 5664.
  • 63
    Peerschke E, Murphy T, Ghebrehiwet B. Activation-dependent surface expression of gC1qR/p33 on human blood platelets. Thromb Haemost 2003; 89: 3319.
  • 64
    Miajlovic H, Loughman A, Brennan M, Cox D, Foster TJ. Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 2007; 75: 333543.
  • 65
    Loughman A, Fitzgerald JR, Brennan MP, Higgins J, Downer R, Cox D, Foster TJ. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 2005; 57: 80418.
  • 66
    Hogarth PM. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr Opin Immunol 2002; 14: 798802.
  • 67
    Kerrigan SW, Clarke N, Loughman A, Meade G, Foster TJ, Cox D. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arterioscler Thromb Vasc Biol 2008; 28: 33540.
  • 68
    Kerrigan SW, Douglas I, Wray A, Heath J, Byrne MF, Fitzgerald D, Cox D. A role for glycoprotein Ib in Streptococcus sanguis-induced platelet aggregation. Blood 2002; 100: 50916.
  • 69
    Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcγRIIa as the ITAM-bearing receptor mediating αIIbβ3 outside-in integrin signaling in human platelets. Blood 2008; 112: 27806.
  • 70
    Sullam PM, Hyun WC, Szollosi J, Dong J-f, Foss WM, Lopez JA. Physical proximity and functional interplay of the glycoprotein Ib–IX–V complex and the Fc receptor Fcgamma RIIA on the platelet plasma membrane. J Biol Chem 1998; 273: 53316.
  • 71
    Sun B, Li J, Kambayashi J. Interaction between GPIbalpha and FcgammaIIA receptor in human platelets. Biochem Biophys Res Commun 1999; 266: 247.
  • 72
    Canobbio I, Bertoni A, Lova P, Paganini S, Hirsch E, Sinigaglia F, Balduini C, Torti M. Platelet activation by von Willebrand factor requires coordinated signaling through thromboxane A2 and Fc gamma IIA receptor. J Biol Chem 2001; 276: 260229.
  • 73
    Kerrigan S, Cox D. The effect of bacterial toxins on platelet function. In: KiniRM, ClemetsonKJ, MarklandFS, McLaneMA, MoritaT, eds. Toxins and Hemostasis From Bench to Bedside. Heidelberg: Springer, 2010: 63751.
  • 74
    Fitzpatrick RE, Wijeyewickrema LC, Pike RN. The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiol 2009; 4: 47187.
  • 75
    Lourbakos A, Potempa J, Travis J, D’Andrea MR, Andrade-Gordon P, Santulli R, Mackie EJ, Pike RN. Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun 2001; 69: 512130.
  • 76
    Lourbakos A, Yuan Y, Jenkins AL, Travis J, Andrade-Gordon P, Santulli R, Potempa J, Pike RN. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 2001; 97: 37907.
  • 77
    Bernheimer AW. Staphylococcal alpha toxin. Ann N Y Acad Sci 1965; 128: 11223.
  • 78
    Arvand M, Bhakdi S, Dahlback B, Preissner KT. Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the prothrombinase complex. J Biol Chem 1990; 265: 1437781.
  • 79
    Baliakina E, Gerasimovskaia EV, Romanov Iu A, Atakhanov Sh E. Role of Staphylococcus aureus hemolytic toxin-alpha in pathogenesis of infectious endocarditis: studies in vitro. Ter Arkh 1999; 71: 2831.
  • 80
    White J, Rao G, Gerrard J. Effects of the lonophore A23187 on blood platelets. I. Influence on aggregation and secretion. Am J Pathol 1974; 77: 13549.
  • 81
    Bryant AE, Bayer CR, Chen RY, Guth PH, Wallace RJ, Stevens DL. Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. J Infect Dis 2005; 192: 101422.
  • 82
    Johnson MK, Boese-Marrazzo D, Pierce WA Jr. Effects of pneumolysin on human polymorphonuclear leukocytes and platelets. Infect Immun 1981; 34: 1716.
  • 83
    Fraser J, Proft T. The bacterial superantigen and superantigen-like proteins. Immunol Rev 2008; 225: 22643.
  • 84
    de Haas C, Weeterings C, Vughs M, de Groot PG, van Strijp J, Lisman T. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibα and αIIbβ3. J Thromb Haemost 2009; 7: 186774.
  • 85
    Hu H, Khalil E, Chen YC, Straub A, Li M, Jia F, Bassler N, Huang D, Ahrens I, Gardiner E, Peter K. Abstract 5298: Staphylococcal superantigen-like 5 induces platelet activation and thrombosis via binding to GPIbα and GPVI. Circulation 2009; 120: S1080.
  • 86
    Sjobring U, Ringdahl U, Ruggeri ZM. Induction of platelet thrombi by bacteria and antibodies. Blood 2002; 100: 44707.
  • 87
    Herzberg MC, Krishnan LK, MacFarlane GD. Involvement of alpha 2-adrenoreceptors and G proteins in the modulation of platelet secretion in response to Streptococcus sanguis. Crit Rev Oral Biol Med 1993; 4: 43542.
  • 88
    Herzberg MC, Brintzenhofe KL. ADP-like platelet aggregation activity generated by viridans streptococci incubated with exogenous ATP. Infect Immun 1983; 40: 1205.
  • 89
    MacFarlane GD, Sampson DE, Clawson DJ, Clawson CC, Kelly KL, Herzberg MC. Evidence for an ecto-ATPase on the cell wall of Streptococcus sanguis. Oral Microbiol Immunol 1994; 9: 1805.
  • 90
    Pampolina C, McNicol A. Streptococcus sanguis-induced platelet activation involves two waves of tyrosine phosphorylation mediated by Fcγ RIIA and αIIbβ3. Thromb Haemost 2005; 93: 9329.
  • 91
    Keane C, Petersen H, Reynolds K, Newman DK, Cox D, Jenkinson HF, Newman PJ, Kerrigan SW. Mechanism of outside-in αIIbβ3-mediated activation of human platelets by the colonizing bacterium, Streptococcus gordonii. Arterioscler Thromb Vasc Biol 2010; 30: 240815.
  • 92
    Douglas CW, Brown PR, Preston FE. Platelet aggregation by oral streptococci. FEMS Microbiol Lett 1990; 60: 637.
  • 93
    Bensing BA, Siboo IR, Sullam PM. Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage. Infect Immun 2001; 69: 618692.
  • 94
    O’Brien L, Kerrigan SW, Kaw G, Hogan M, Penades J, Litt D, Fitzgerald DJ, Foster TJ, Cox D. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine–aspartate repeat protein SdrE and protein A. Mol Microbiol 2002; 44: 103344.
  • 95
    Huang Z-Y, Chien P, Indik ZK, Schreiber AD. Human platelet FcγRIIa and phagocytes in immune-complex clearance. Mol Immunol 2011; 48: 6916.
  • 96
    Maugeri N, Rovere-Querini P, Evangelista V, Covino C, Capobianco A, Bertilaccio MTS, Piccoli A, Totani L, Cianflone D, Maseri A, Manfredi AA. Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin, and β2 integrin-dependent cell clearance program. Blood 2009; 113: 525465.
  • 97
    Assinger A, Laky M, Schabbauer G, Hirschl A, Buchberger E, Binder BR, Volf I. Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2. J Thromb Haemost 2011; 9: 799809.
  • 98
    Iwai T. Periodontal bacteremia and various vascular diseases. J Periodontal Res 2009; 44: 68994.
  • 99
    Li X, Iwai T, Nakamura H, Inoue Y, Chen Y, Umeda M, Suzuki H. An ultrastructural study of Porphyromonas gingivalis-induced platelet aggregation. Thromb Res 2008; 122: 81019.
  • 100
    White JG. Why human platelets fail to kill bacteria. Platelets 2006; 17: 191200.
  • 101
    Boukour S, Cramer EM. Platelet interaction with bacteria. Platelets 2005; 16: 21517.
  • 102
    Youssefian T, Drouin A, Masse JM, Guichard J, Cramer EM. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 2002; 99: 40219.
  • 103
    Liu C-Z, Huang T-F, Tsai P-J, Tsai P-J, Chang L-Y, Chang M-C. A segment of Staphylococcus aureus clumping factor A with fibrinogen-binding activity (ClfA221–550) inhibits platelet-plug formation in mice. Thromb Res 2007; 121: 18391.
  • 104
    Hinshaw L, Taylor FJ, Chang A, Pryor R, Lee P, Straughn F, Murray C, Flournoy D, Peer G, Kosanke S. Staphylococcus aureus-induced shock: a pathophysiologic study. Circ Shock 1988; 26: 25765.
  • 105
    Dhawan VK, Yeaman MR, Cheung AL, Kim E, Sullam PM, Bayer AS. Phenotypic resistance to thrombin-induced platelet microbicidal protein in vitro is correlated with enhanced virulence in experimental endocarditis due to Staphylococcus aureus. Infect Immun 1997; 65: 32939.
  • 106
    Bayer A, Ramos M, Menzies B, Yeaman M, Shen A, Cheung A. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect Immun 1997; 65: 465260.
  • 107
    Weidenmaier C, Peschel A, Xiong Y, Kristian S, Dietz K, Yeaman M, Bayer A. Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 2005; 191: 17717.
  • 108
    Que Y-A, Francois P, Haefliger J-A, Entenza J-M, Vaudaux P, Moreillon P. Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect Immun 2001; 69: 6296302.
  • 109
    Entenza JM, Foster TJ, Ni Eidhin D, Vaudaux P, Francioli P, Moreillon P. Contribution of clumping factor B to pathogenesis of experimental endocarditis due to Staphylococcus aureus. Infect Immun 2000; 68: 54436.
  • 110
    Moreillon P, Entenza JM, Francioli P, McDevitt D, Foster TJ, Francois P, Vaudaux P. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 1995; 63: 473843.
  • 111
    Entenza J-M, Moreillon P, Senn MM, Kormanec J, Dunman PM, Berger-Bachi B, Projan S, Bischoff M. Role of sigmaB in the expression of Staphylococcus aureus cell wall adhesins ClfA and FnbA and contribution to infectivity in a rat model of experimental endocarditis. Infect Immun 2005; 73: 9908.
  • 112
    Peerschke EIB, Bayer AS, Ghebrehiwet B, Xiong YQ. gC1qR/p33 blockade reduces Staphylococcus aureus colonization of target tissues in an animal model of infective endocarditis. Infect Immun 2006; 74: 441823.
  • 113
    Aguejouf O, Mayo K, Monteiro L, Doutremepuich F, Doutremepuich C, Megraud F. Increase of arterial thrombosis parameters in chronic Helicobacter pylori infection in mice. Thromb Res 2002; 108: 2458.
  • 114
    Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 2008; 14: 64855.
  • 115
    Davi G, Neri M, Falco A, Festi D, Taraborelli T, Ciabattoni G, Basili S, Cuccurullo F, Patrono C. Helicobacter pylori infection causes persistent platelet activation in vivo through enhanced lipid peroxidation. Arterioscler Thromb Vasc Biol 2005; 25: 24651.
  • 116
    Yeh J-J, Tsai S, Wu D-C, Wu J-Y, Liu T-C, Chen A. P-selectin-dependent platelet aggregation and apoptosis may explain the decrease in platelet count during Helicobacter pylori infection. Blood 2010; 115: 424753.
  • 117
    Kohda K, Kuga T, Kogawa K, Kanisawa Y, Koike K, Kuroiwa G, Hirayama Y, Sato Y, Niitsu Y. Effect of Helicobacter pylori eradication on platelet recovery in Japanese patients with chronic idiopathic thrombocytopenic purpura and secondary autoimmune thrombocytopenic purpura. Br J Haematol 2002; 118: 5848.
  • 118
    Sato R, Murakami K, Watanabe K, Okimoto T, Miyajima H, Ogata M, Ohtsuka E, Kodama M, Saburi Y, Fujioka T, Nasu M. Effect of Helicobacter pylori eradication on platelet recovery in patients with chronic idiopathic thrombocytopenic purpura. Arch Intern Med 2004; 164: 19047.
  • 119
    Rostami N, Keshtkar-Jahromi M, Rahnavardi M, Soghra Esfahani F. Effect of eradication of Helicobacter pylori on platelet recovery in patients with chronic idiopathic thrombocytopenic purpura: a controlled trial. Am J Hematol 2008; 83: 37681.
  • 120
    Arnold DM, Bernotas A, Nazi I, Stasi R, Kuwana M, Liu Y, Kelton JG, Crowther MA. Platelet count response to H. pylori treatment in patients with immune thrombocytopenic purpura with and without H. pylori infection: a systematic review. Haematologica 2009; 94: 8506.
  • 121
    Pietersz GA, Mottram PL, van de Velde NC, Sardjono CT, Esparon S, Ramsland PA, Moloney G, Baell JB, McCarthy TD, Matthews BR, Powell MS, Hogarth PM. Inhibition of destructive autoimmune arthritis in FcγRIIa transgenic mice by small chemical entities. Immunol Cell Biol 2008; 87: 312.
  • 122
    Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA. Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 2009; 7: 2416.