SEARCH

SEARCH BY CITATION

References

  • 1
    Chalupowicz DG, Chowdhury ZA, Bach TL, Barsigian C, Martinez J. Fibrin II induces endothelial cell capillary tube formation. J Cell Biol 1995; 130: 20715.
  • 2
    Martinez J, Ferber A, Bach TL, Yaen CH. Interaction of fibrin with VE-cadherin. Ann N Y Acad Sci 2001; 936: 386405.
  • 3
    Languino LR, Plescia J, Duperray A, Brian AA, Plow EF, Geltosky JE, Altieri DC. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 1993; 73: 142334.
  • 4
    Altieri DC. Regulation of leukocyte–endothelium interaction by fibrinogen. Thromb Haemost 1999; 82: 7816.
  • 5
    Petzelbauer P, Zacharowski PA, Miyazaki Y, Friedl P, Wickenhauser G, Castellino FJ, Groger M, Wolff K, Zacharowski K. The fibrin-derived peptide Bβ15–42 protects the myocardium against ischemia–reperfusion injury. Nat Med 2005; 11: 298304.
  • 6
    Zacharowski K, Zacharowski P, Reingruber S, Petzelbauer P. Fibrin(ogen) and its fragments in the pathophysiology and treatment of myocardial infarction. J Mol Med 2006; 84: 46977.
  • 7
    Henschen A, McDonagh J. Fibrinogen, fibrin and factor XIII. In: ZwaalRFA, HemkerHC, eds. Blood Coagulation. Amsterdam: Elsevier Science Publishers, 1986: 171241.
  • 8
    Blomback B, Blomback M, Henschen A, Hessel B, Iwanaga S, Woods KR. N-terminal disulphide knot of human fibrinogen. Nature 1968; 218: 1304.
  • 9
    Bach TL, Barsigian C, Yaen CH, Martinez J. Endothelial cell VE-cadherin functions as a receptor for the β15–42 sequence of fibrin. J Biol Chem 1998; 273: 3071928.
  • 10
    Gorlatov S, Medved L. Interaction of fibrin(ogen) with the endothelial cell receptor VE-cadherin: mapping of the receptor-binding site in the NH2-terminal portions of the fibrin β chains. Biochemistry 2002; 41: 410716.
  • 11
    Odrljin TM, Francis CW, Sporn LA, Bunce LA, Marder VJ, Simpson-Haidaris PJ. Heparin-binding domain of fibrin mediates its binding to endothelial cells. Arterioscler Thromb Vasc Biol 1996; 16: 154451.
  • 12
    Yakovlev S, Gorlatov S, Ingham K, Medved L. Interaction of fibrin(ogen) with heparin: further characterization and localization of the heparin-binding site. Biochemistry 2003; 42: 770916.
  • 13
    Loike JD, Sodeik B, Cao L, Leucona S, Weitz JI, Detmers PA, Wright SD, Silverstein SC. CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the Aα chain of fibrinogen. Proc Natl Acad Sci USA 1991; 88: 10448.
  • 14
    Yakovlev S, Medved L. Interaction of fibrin(ogen) with the endothelial cell receptor VE-cadherin: localization of the fibrin-binding site within the third extracellular VE-cadherin domain. Biochemistry 2009; 48: 51719.
  • 15
    Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci USA 1978; 75: 245862.
  • 16
    Cao C, Lawrence DA, Strickland DK, Zhang L. A specific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics. Blood 2005; 106: 323441.
  • 17
    Zacharowski K, Zacharowski PA, Friedl P, Mastan P, Koch A, Boehm O, Rother RP, Reingruber S, Henning R, Emeis JJ, Petzelbauer P. The effect of the fibrin-derived peptide Bβ15–42 in acute and chronic rodent models of myocardial ischemia–reperfusion. Shock 2007; 27: 6317.
  • 18
    Roesner JP, Petzelbauer P, Koch A, Mersmann J, Zacharowski PA, Boehm O, Reingruber S, Pasteiner W, Mascher D, Wolzt M, Barthuber C, Noldge-Schomburg GE, Scheeren TW, Zacharowski K. The fibrin-derived peptide Bβ15–42 is cardioprotective in a pig model of myocardial ischemia–reperfusion injury. Crit Care Med 2007; 35: 17305.
  • 19
    Hauert AB, Martinelli S, Marone C, Niggli V. Differentiated HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis. Int J Biochem Cell Biol 2002; 34: 83854.
  • 20
    Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Mossmann H, Vestweber D. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 1997; 110: 5838.
  • 21
    Chavakis T, Kanse SM, Pixley RA, May AE, Isordia-Salas I, Colman RW, Preissner KT. Regulation of leukocyte recruitment by polypeptides derived from high molecular weight kininogen. FASEB J 2001; 15: 236576.
  • 22
    Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG, Flock JI, Herrmann M, Preissner KT. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 2002; 8: 68793.
  • 23
    Roesner JP, Petzelbauer P, Koch A, Tran N, Iber T, Vagts DA, Scheeren TW, Vollmar B, Noldge-Schomburg GE, Zacharowski K. Bβ15–42 (FX06) reduces pulmonary, myocardial, liver, and small intestine damage in a pig model of hemorrhagic shock and reperfusion. Crit Care Med 2009; 37: 598605.
  • 24
    Roesner JP, Petzelbauer P, Koch A, Tran N, Iber T, Mutz C, Vollmar B, Noldge-Schomburg GE, Zacharowski K. A double blind, single centre, sub-chronic reperfusion trial evaluating FX06 following haemorrhagic shock in pigs. Resuscitation 2009; 80: 26471.
  • 25
    Atar D, Petzelbauer P, Schwitter J, Huber K, Rensing B, Kasprzak JD, Butter C, Grip L, Hansen PR, Suselbeck T, Clemmensen PM, Marin-Galiano M, Geudelin B, Buser PT; F.I.R.E Investigators. Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. (Efficacy of FX06 in the Prevention of Myocardial Reperfusion Injury) trial. J Am Coll Cardiol 2009; 53: 7209.