• 1
    Hugo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9: 617.
  • 2
    Ferroni P, Basili S, Falco A, Davi G. Platelet activation in type 2 diabetes mellitus. J Thromb Haemost 2004; 2: 128291.
  • 3
    Ajjan R, Storey RF, Grant PJ. Aspirin resistance and diabetes mellitus. Diabetologia 2008; 51: 38590.
  • 4
    Li Y, Woo V, Bose R. Platelet hyperactivity and abnormal Ca2+ homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol 2001; 280: H14809.
  • 5
    Randriamboavonjy V, Pistrosch F, Bölck B, Schwinger RH, Dixit M, Badenhoop K, Cohen RA, Busse R, Fleming I. Platelet sarcoplasmic endoplasmic reticulum Ca2+-ATPase and μ-calpain activity are altered in type 2 diabetes mellitus and restored by rosiglitazone. Circulation 2008; 117: 5260.
  • 6
    Saavedraa FR, Redondoa PC, Hernández-Cruzb JM, Salidoa GM, Parientea JA, Rosado JA. Store-operated Ca2+ entry and tyrosine kinase pp60src hyperactivity are modulated by hyperglycemia in platelets from patients with non insulin-dependent diabetes mellitus. Arch Biochem Biophys 2004; 432: 2618.
  • 7
    Chaabane C, Dally S, Corvazier E, Bredoux R, Bobe R, Ftouhi B, Raies A, Enouf J. Platelet PMCA- and SERCA-type Ca2+-ATPase expression in diabetes: a novel signature of abnormal megakaryocytopoiesis. J Thromb Haemost 2007; 5: 212735.
  • 8
    Fukuda K, Ozaki Y, Satoh K, Kume S, Tawata M, Onaya T, Sakurada K, Seto M, Sasaki Y. Phosphorylation of myosin light chain in resting platelets from NIDDM patients is enhanced: correlation with spontaneous aggregation. Diabetes 1997; 46: 48893.
  • 9
    Anfossi G, Russo I, Trovati M. Platelet dysfunction in central obesity. Nutr Metab Cardiovasc Dis 2009; 19: 4409.
  • 10
    Beard NA, Laver DR, Dulhunty AF. Calsequestrin and the Ca2+ release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 2004; 85: 3369.
  • 11
    Györke I, Hester N, Jones LR, Györke S. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal Ca2+. Biophys J 2004; 86: 21218.
  • 12
    Jones LR, Zhang L, Sanbom K, Jorgensen AO, Kelley J. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J Biol Chem 1995; 270: 3078796.
  • 13
    Knollmann BC, Chopra N, Hlaing T, Akin B, Yang T, Ettensohn K, Knollmann BE, Horton KD, Weissman NJ, Holinstat I, Zhang W, Roden DM, Jones LR, Franzini-Armstrong C, Pfeifer K. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J Clin Invest 2006; 116: 251020.
  • 14
    Chopra N, Kannankeril PJ, Yang T, Hlaing T, Holinstat I, Ettensohn K, Pfeifer K, Akin B, Jones LR, Franzini-Armstrong C, Knollmann BC. Modest reductions of cardiac calsequestrin increase sarcoplasmic reticulum Ca2+ leak independent of luminal Ca2+ and trigger ventricular arrhythmias in mice. Circ Res 2007; 101: 61726.
  • 15
    Dainese M, Quarta M, Lyfenko AD, Paolini C, Canato M, Reggiani C, Dirksen RT, Protasi F. Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J 2009; 23: 171020.
  • 16
    MacLennan DH, Chen SR. Store overload-induced Ca2+ release as a triggering mechanism for CPVT and MH episodes caused by mutations in RYR and CASQ genes. J Physiol 2009; 587: 311315.
  • 17
    Kim E, Tam M, Siems WF, Kang C. Effects of drugs with muscle-related side effects and affinity for calsequestrin on the Ca2+ regulatory function of sarcoplasmic reticulum microsomes. Mol Pharmacol 2005; 68: 170815.
  • 18
    Fu M, Damcott CM, Sabra M, Pollin TI, Ott SH, Wang J, Garant MJ, O’Connell JR, Mitchell BD, Shuldiner AR. Polymorphism in the calsequestrin 1 (casq1) gene on chromosome 1q21 is associated with type 2 diabetes in the old order Amish. Diabetes 2004; 53: 32929.
  • 19
    Zhu Z, Zhang Q, Chen L, Ren S, Xu P, Tang Y, Luo D. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb Res 2010; 125: 41926.
  • 20
    Luo D, Broad LM, Bird GS, Putney JW Jr. Signaling pathways underlying muscarinic receptor-induced [Ca2+]i oscillations in HEK293 cells. J Biol Chem 2001; 276: 561321.
  • 21
    Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260: 344050.
  • 22
    Chen L, Meng Q, Jing X, Xu P, Luo D. A role for protein kinase C in the regulation of membrane fluidity and Ca2+ flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells. Cell Signal 2011; 23: 497505.
  • 23
    Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J 1999; 344: 28192.
  • 24
    Galli J, Li LS, Glaser A, Ostenson CG, Jiao H, Fakhrai-Rad H, Jacob HJ, Lander ES, Luthman H. Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nat Genet 1996; 12: 317.
  • 25
    López JJ, Redondo PC, Salido GM, Pariente JA, Rosado JA. Two distinct Ca2+ compartments show differential sensitivity to thrombin, ADP and vasopressin in human platelets. Cell Signal 2006; 18: 37381.
  • 26
    Zhang F, Li PL. Reconstitution and characterization of a nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive Ca2+ release channel from liver lysosomes of rats. J Biol Chem 2007; 282: 2525969.
  • 27
    Chopra N, Laver D, Davies SS, Knollmann BC. Amitriptyline activates cardiac ryanodine channels and causes spontaneous sarcoplasmic reticulum Ca2+ release. Mol Pharmacol 2009; 75: 18395.
  • 28
    Reilly JG, Ayis SA, Ferrier IN, Jones SJ, Thomas SH. QTc-interval abnormalities and psychotropic drug therapy in psychiatric patients. Lancet 2000; 355: 104852.
  • 29
    Kip SN, Strehler EE. Characterization of PMCA isoforms and their contribution to transcellular Ca2+ flux in MDCK cells. Am J Physiol Renal Physiol 2003; 284: F12232.
  • 30
    Engelender S, Wolosker H, de Meis L. The Ca2+-ATPase isoforms of platelets are located in distinct functional Ca2+ pools and are uncoupled by a mechanism different from that of skeletal muscle Ca2+-ATPase. J Biol Chem 1995; 270: 210505.
  • 31
    McCloskey C, Jones S, Amisten S, Snowden RT, Kaczmarek LK, Erlinge D, Goodall AH, Forsythe ID, Mahaut-Smith MP. Kv1.3 is the exclusive voltage-gated K+ channel of platelets and megakaryocytes: roles in membrane potential, Ca2+ signaling and platelet count. J Physiol 2010; 588: 1399406.
  • 32
    Volpe P, Alderson-Lang BH, Madeddu L, Damiani E, Collins JH, Margreth A. Calsequestrin, a component of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of chicken cerebellum. Neuron 1990; 5: 71321.
  • 33
    Hashimoto S, Bruno B, Lew DP, Pozzan T, Volpe P, Meldolesi J. Immunocytochemistry of calciosomes in liver and pancreas. J Cell Biol 1988; 107: 252331.
  • 34
    Papazafiri P, Bossi M, Meldolesi J. Expression of muscle calsequestrin in epithelial Hela cells: distribution and functional role. Biochim Biophys Acta 1994; 1223: 33340.