• ADAMTS13;
  • metalloprotease;
  • microangiopathy;
  • thrombotic thrombocytopenic purpura;
  • Upshaw–Schulman syndrome;
  • von Willebrand factor

Summary.  ADAMTS13, the specific von Willebrand factor (VWF)-cleaving metalloprotease, prevents the spontaneous formation of platelet thrombi in the microcirculation by degrading the highly adhesive ultralarge VWF multimers into smaller forms. ADAMTS13 severe enzymatic deficiency and mutations have been described in the congenital thrombotic thrombocytopenic purpura (TTP or Upshaw–Schulman syndrome), a rare and severe disease related to multivisceral microvascular thrombosis. We investigated six French families with congenital TTP for ADAMTS13 enzymatic activity and gene mutations. Six probands with congenital TTP and their family were tested for ADAMTS13 activity in plasma using a two-site immunoradiometric assay and for ADAMTS13 gene mutations using polymerase chain reaction and sequencing. ADAMTS13 activity was severely deficient (< 5%) in the six probands and one mildly symptomatic sibling but normal (> 50%) in all the parents and the asymptomatic siblings. Ten novel candidate ADAMTS13 mutations were identified in all families, showing either a compound heterozygous or a homozygous status in all probands plus the previous sibling and a heterozygous status in the parents. The mutations were spread all over the gene, involving the metalloprotease domain (I79M, S203P, R268P), the disintegrin domain (29 bp deletion in intron/exon 8), the cystein-rich domain (acceptor splice exon 12, R507Q), the spacer domain (A596V), the 3rd TSP1 repeat (C758R), the 5th TSP1 repeat (C908S) and the 8th TSP1 repeat (R1096stop). This study emphasizes the role of ADAMTS13 mutations in the pathogenesis of congenital TTP and suggests that several structural domains of this metalloprotease are involved in both its biogenesis and its substrate recognition process.