Benchmark Dose Analysis for Bacillus anthracis Inhalation Exposures in the Nonhuman Primate

Authors


Sarah C. Taft, U.S. Environmental Protection Agency, National Homeland Security Research Center, 26 West Martin Luther King Drive, MS-NG-16, Cincinnati, OH 45268, USA; tel: 513-569-7037; fax: 513-487-2555; taft.sarah@epa.gov.

Abstract

There is considerable variability in the published lethality values for inhalation exposures of Bacillus anthracis. The lack of consensus on an acceptable dose-response relationship poses a significant challenge in the development of risk-based management approaches for use following a terrorist release of B. anthracis spores. This article reviewed available B. anthracis dose-response modeling and literature for the nonhuman primate, evaluated the use of the U.S. Environmental Protection Agency's Benchmark Dose Software (BMDS) to fit mathematical dose-response models to these data, and reported results of the benchmark dose analysis of suitable data sets. The BMDS was found to be a useful tool to evaluate dose-response relationships in microbial data, including that from B. anthracis exposure. An evaluation of the sources of variability identified in the published lethality data and the corresponding BMDS-derived lethality values found that varying levels of physical characterization of the spore product, differing receptor-specific exposure assumptions, choice of dose metrics, and the selected statistical methods all contributed to differences in lethality estimates. Recognition of these contributors to variability could ultimately facilitate agreement on a B. anthracis dose-response relationship through provision of a common description of necessary study considerations for acceptable dose-response data sets.

Ancillary