Get access

Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression

Authors

  • Lane F. Burgette,

    Corresponding author
    1. Department of Statistical Science, Duke University, Durham, North Carolina 27708, U.S.A.
      email: lb131@stat.duke.edu
    Search for more papers by this author
  • Jerome P. Reiter

    Corresponding author
    1. Department of Statistical Science, Duke University, Durham, North Carolina 27708, U.S.A.
      email: jerry@stat.duke.edu
    Search for more papers by this author

email:lb131@stat.duke.edu

email:jerry@stat.duke.edu

Abstract

Summary We describe a Bayesian quantile regression model that uses a confirmatory factor structure for part of the design matrix. This model is appropriate when the covariates are indicators of scientifically determined latent factors, and it is these latent factors that analysts seek to include as predictors in the quantile regression. We apply the model to a study of birth weights in which the effects of latent variables representing psychosocial health and actual tobacco usage on the lower quantiles of the response distribution are of interest. The models can be fit using an R package called factorQR.

Get access to the full text of this article

Ancillary