SEARCH

SEARCH BY CITATION

References

  • Abbas CA, Card GL. 1980. The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica. Biochim Biophys Acta 602: 46976.
  • Abee T, Wouters JA. 1999. Microbial stress response in minimal processing. Int J Food Microbiol 50: 591.
  • Abbiss JS. 1983. Injury and resuscitation of microbes with reference to food microbiology. J Food Sci Tech 7: 6981.
  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. 1994. The membrane structure. In: Molecular biology of the cell. 3rd ed. London : Garland Publishing Inc. p 477506.
  • Amezega MR, Davidson I, McLaggan D, Verheyul A, Abee T, Booth I. 1995. The role of peptide metabolism in the growth of Listeria monocytogenes ATCC 23074 at high osmolarity. Microbiology 141: 419.
  • Anand S, Prasad R. 1989. Rise in intracellular pH is concurrent with ‘start’ progression of Saccharomyces cerevisiae. J Gen Microbiol 135: 21739.
  • Anderson PA, Kaasen I, Styrvold O, Boulnois G, Strom AR. 1988. Molecular cloning, physical mapping and expression of bet genes governing the osmoregulatory choline-glycinebetaine pathway of Escherichia coli. J Gen Microbiol 134: 173746.
  • Angelidis AS, Smith GM. 2003a. Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress. Appl Environ Microbiol 69(2): 101322.
  • Angelidis AS, Smith GM. 2003b. Role of glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl Environ Microbiol 69(12): 74928.
  • Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ. 1997. Critical role of anteiso-C15: 0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63(10): 388794.
  • Bae HY, Miller J. 1992. Identification of two proline transport systems in Staphylococcus aureus and their possible roles in osmoregulation. Appl Environ Microbiol 58: 4715.
  • Baik HS, Bearson S, Dunbar S, Foster JW. 1996. The acid tolerance response of Salmonella typhimurium provides protection against organic acids. Microbiology 142: 3195200.
  • Baleiras-Couto MM, Huis-In't-Veld JHJ. 1995. Influence of ethanol and temperature on the cellular fatty acid composition of Zygosaccharomyces bailii spoilage yeasts. J Appl Bact 78(3): 32733.
  • Baxter RM, Gibbons NE. 1962. Observations on the physiology of psychrophilism in a yeast. Can J Microbiol 8: 1157.
  • Bayles DO, Bassam AA, Wilkinson BJ. 1996. Cold stress proteins induced in Listeria monocytogenes in response to temperature down shock and growth at low temperatures. Appl Environ Microbiol 62(3): 11169.
  • Beales N, Ogburn E, Betts GD. 2001. Extending microbial lag time: the potential to increase product shelf life. Gloucestershire , U. K. : Campden & Chorleywood Food Research Association. R&D Report nr 136.
  • Bearson S, Bearson B, Foster JW. 1997. Acid stress responses in enterobacteria. FEMS Microbiol Lett 147: 17380.
  • Berry ED. 1996. Cold shock proteins and cold shock domains in Bacillus cereus [abstract]. Abstracts, 96th General Meeting of American Society of Microbiology; May 1996; Washington D.C. p 317.
  • Berry ED, Foegeding PM. 1997. Cold temperature adaptation and growth of microorganisms. J Food Prot 60(12): 158394.
  • Betts GD, Linton P, Betteridge RJ. 2000. Synergistic effects of sodium chloride, temperature and pH on growth of spoilage yeasts: a research note. Food Microbiol 17(1): 4752.
  • Beuchat LR. 1981. Combined effects of solutes and food preservatives on rates of inactivation and colony formation by heated spores and vegetative cells of moulds. Appl Environ Microbiol 41: 4727.
  • Beuchat LR. 1982. Thermal inactivation of yeasts in fruit juices supplemented with food preservatives and sucrose. J Food Sci 47: 167982.
  • Beumer RR, TeGiffel MC, Cox JL, Rombouts FM, Abee T. 1994. Effect of exogenous proline, betaine, and cartinine on growth of Listeria monocytogenes in minimal medium. Appl Environ Microbiol 60(4): 135963.
  • Bills S, Restaino L, Lenovich LM. 1982. Growth response of an osmotolerant sorbate-resistant yeast, Saccharomyces rouxii, at different sucrose and sorbate levels. J Food Prot 45(12): 11204.
  • Bodnauk PW, Golden DA. 1996. Influence of pH and incubation temperature on fatty acid composition and virulence factors of Yersinia enterocolitica. Food Microbiol 13(1): 1722.
  • Booth IR, Kroll RG. 1989. The preservation of foods by low pH. In: GouldGW, editor. Mechanisms of action of food preservation procedures. London : Elsevier Applied Science. p 11960.
  • Booth IR, Pourkomailian B, McLaggan D, Koo SP. 1994. Mechanisms controlling compatible solute accumulation: a consideration of the genetics and physiology of bacterial osmoregulation. J Food Eng 22: 38197.
  • Bower CK, Daeschel MA. 1999. Resistance responses of microorganisms in food environments. Int J Food Microbiol 50(1/2): 3344.
  • Brackett RE, Hao YY, Doyle MP. 1994. Ineffectiveness of hot acid sprays to decontaminate Escherichia coli O157:H7 on beef. J Food Prot 57(3): 198203.
  • Braley R, Piper PW. 1997. The C-terminus of yeast plasma membrane H+-ATPase is essential for the regulation of this enzyme by heat shock protein Hsp30, but not for stress activation. FEBS Lett 418: 1236.
  • Brown MH, Booth IR. 1991. Acidulants and low pH. In: RussellNJ, GouldGW, editors. Food preservatives. Glasgow , U. K. : Blackie. p 2243.
  • Brown JL, Ross T, McMeekin TA, Nichols PD. 1997. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37: 16373.
  • Brown CM, Minnikin DE. 1973. The effect of growth temperature on the fatty acid composition of some psychrophilic marine pseudomonads. J Gen Microbiol 75(9):ix.
  • Brown CM, Rose AH. 1969. Fatty acid composition of Candida utilis as affected by growth temperature and dissolved O2 tension. J Bacteriol 99: 3718.
  • Browne N, Dowds BCA. 2001. Heat and salt stress in the food pathogen Bacillus cereus. Lett Appl Microbiol 91: 108594.
  • Browne N, Dowds BCA. 2002. Acid stress in the food pathogen Bacillus cereus. J Appl Microbiol 92(3): 40414.
  • Brudzinski L, Harrison MA. 1998. Influence and incubation conditions of E. coli O157:H7 and non O157:H7 isolates exposed to acetic acid. J Food Prot 61(5): 5426.
  • Brul S, Coote P. 1999. Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol 50: 117.
  • Busta FF. 1978. Introduction to injury and repair of microbial cells. Adv Appl Microbiol 23: 195201.
  • Bygraves JA, Russell NJ. 1988. Solute tolerance and membrane lipid composition in some halotolerant food spoilage bacteria. Food Microbiol 5: 10916.
  • Cairney J, Booth IR, Higgins CF. 1985. Osmoregulation of gene expression in Salmonella Typhimurium: proU encodes an osmotically induced glycine betaine transport system. J Bacteriol 164: 122432.
  • Casey PG, Condon S. 2002. Sodium chloride decreases the bactericidal effect of acid pH on Escherichia coli O157:H45. Int J Food Microbiol 79: 199206.
  • Cheroutre-Vialette M, Lebert I, Hebraud M, Labadie JC, Lebert A. 1998. Effects of pH or aw stress on growth of Listeria monocytogenes. Int J Microbiol 42: 7177.
  • Clarke A. 1981. Effects of temperature on the lipid composition of tetrahymena. In: MorrisGJ, ClarkeA, editors. Effects of low temperature on biological membranes. London : Academic Press. p 5582.
  • Cole MB, Keenan MHJ. 1987. Effects of weak acids and external pH on the intracellular pH of Zygosaccharomyces bailii and its implications in weak acid resistance. Yeast 3: 2332.
  • Coleman W, Leive L. 1979. Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. J Bacteriol 139: 899910.
  • Conner DE, Kotrola JS. 1995. Growth and survival of Escherichia coli O157:H7 under acidic conditions. Appl Environ Microbiol 61: 3825.
  • Coote PJ, Cole MB, Jones MV. 1991. Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J Gen Microbiol 137: 17018.
  • Cotter PD, Gahan CGM, Hill C. 2001. A glutamate-mediated system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40(2): 46575.
  • Csonka LN. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53(1): 12147.
  • Csonka LN, Hanson AD. 1991 Prokaryotic osmoregulation: genetics and physiology. Ann Rev Microbiol 45: 569606.
  • Davail S, Feller G, Narinx E, Gerday C. 1994. Cold adaptation of proteins. J Biol Chem 269: 1744853.
  • Davis MJ, Coote PJ, O'Byrne CP. 1996. Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth phase-dependent acid resistance. Microbiology 142: 297582.
  • De Jonge R, Ritmeester WS, Van Leusden FM. 2003a. Adaptive responses of Salmonella enterica serovar Typhimurium DT104 and other S. Typhimurium strains and Escherichia coli O157 to low pH environments. J Appl Microbiol 94: 62532.
  • De Jonge R, Takumi K, Ritmeester WS, Van Leusden FM. 2003b. The adaptive response of Escherichia coli O157 in an environment with changing pH. J Appl Microbiol 94: 55560.
  • Dinnbier U, Limpinsel E, Schmid R, Bakker EP. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150: 34857.
  • Duffy G, Riordan DC, Sheridan JJ, Call JE, Whiting RC, Blair IS, McDowell DA. 2000. Effect of pH on survival, thermotolerance and verotoxin production of Escherichia coli O157:H7 during simulated fermentation and storage. J Food Prot 63(1): 128.
  • Dufrenne J, Delfgou E, Ritmeester W, Notermans S. 1997. The effect of previous growth conditions on the lag phase time of some foodborne pathogenic microorganisms. Int J Food Microbiol 34: 8994.
  • Eklund T. 1985a. The effect of sorbic acid and esters of p-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane vesicles. J Gen Microbiol 313: 736.
  • Eklund T. 1985b. Inhibition of microbial growth at different pH levels by benzoic and propionic acids and esters of p-hydroxybenzoic acid. Int J Food Microbiol 2: 15967.
  • Eklund T. 1989. Organic acids and esters. In: GouldGW, editor. Mechanisms of action of food preservation procedures. London : Elsevier Applied Science. p 161200.
  • Eklund T. 1983. The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl Bacteriol 54: 3839.
  • Eraso P, Cid A, Serrano R. 1987. Tight control of amount of yeast plasma membrane ATPase during changes in growth conditions and gene dosage. FEBS Lett 224: 1937.
  • Eraso P, Portillo F. 1994. Molecular mechanism of regulation of yeast plasma membrane H+ATPase by glucose. J Biol Chem 269(14): 103939.
  • Etchegaray JP, Inouye M. 1999. CspA, CspB and CspG major cold shock proteins of E. coli are induced at low temperatures under conditions that completely block protein synthesis. J Bacteriol 181(6): 182730.
  • Evans RI, McClure PJ, Gould GW, Russell NJ. 1998. The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum. Int J Food Microbiol 40: 15967.
  • Everis L, Betts G. 2001. pH stress can cause cell elongation in Bacillus and Clostridium species: a research note. Food Contr 12: 536.
  • Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J, Harwood J, Guiney DG. 1992. The alternative sigma factor (rpoS) regulates Salmonella virulence. Proc Nat Acad Sci USA 89: 1197882.
  • Farrell J, Rose AH. 1967. Temperature effects on microorganisms. In: RoseAH, editor. Thermobiology. London : Academic Press. p 147218.
  • Fernanda Rosa M, Sa-Correia I. 1991. In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl Environ Microbiol 57: 8305.
  • Flanders KJ, Donnelly CW. 1994. Injury, resuscitation, and detection of Listeria spp. from frozen environments. Food Microbiol 11: 47380.
  • Fleet GH. 1992. Spoilage yeasts. Crit Rev Microbiol 12: 144.
  • Foster JW. 1991. Salmonella acid shock proteins are required for adaptive acid tolerance response. J Bacteriol 173: 6896902.
  • Foster JW. 1993. The acid tolerance response of Salmonella Typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175: 19817.
  • Foster JW. 2001. Acid stress response of Salmonella and E. coli: survival mechanisms, regulation, and implications for pathogenesis. J Microbiol 39(2): 8994.
  • Foster JW, Hall HK. 1990. Adaptive acidification tolerance response of Salmonella Typhimurium. J Bacteriol 172: 7718.
  • Foster JW, Hall HK. 1991. Inducible pH homeostasis and the acid tolerance response of Salmonella Typhimurium. J Bacteriol 173: 512935.
  • Foster JW, Spector M. 1995. How Salmonella survives against the odds. Ann Rev Microbiol 49: 14574.
  • Fraser KR, Sue D, Wiedman M, Boor K, O'Byrne CP. 2003. Role of sigmaB in regulating the compatible solute uptake of systems of Listeria monocytogenes: osmotic induction of opuC is sigmaB dependent. Appl Environ Microbiol 69(4) 201522.
  • Fulco AJ. 1970. Biosynthesis of unsaturated fatty acids in bacilli. J Biol Chem 43: 21541.
  • Gahan CGM, Hill C. 1999. The relationship between acid stress responses and virulence in Salmonella Typhimurium and Listeria monocytogenes. Int J Food Microbiol 50(1/2): 93100.
  • Gahan CGM, O'Driscoll B, Hill C. 1996. Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl Environ Microbiol 62: 312832.
  • Galinski EA. 1995. Osmoadaptation of bacteria. Adv Microbiol Phys 37: 273328.
  • Gallinski EA, TrÜper HG. 1994. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15: 95108.
  • Garren DM, Harrison MA, Russell SM. 1998. Acid tolerance and acid shock responses of Escherichia coli O157:H7 and non-O157:H7 isolates provide cross protection to sodium lactate and sodium chloride. J Food Prot 61(2): 15861.
  • Gay M, Cerf O. 1997. Significance of temperature and preincubation temperature on survival of Listeria monocytogenes at pH 4.8. Lett Appl Microbiol 25: 25760.
  • Giaever H, Styrvold O, Kaasen I, Strom AR. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170: 28419.
  • Gill CO. 1975. Effect of growth temperature on the lipids of Pseudomonas fluorescens. J Gen Microbiol 89: 2938.
  • Golden DA, Beauchat LR. 1992a. Effects of potassium sorbate on growth patterns, morphology, and heat resistance of Zygosaccharomyces rouxii at reduced water activity. Can J Microbiol 38: 12529.
  • Golden DA, Beuchat LR. 1992b. Interactive effects of solutes, potassium sorbate and incubation temperature on growth, heat resistance and tolerance to freezing of Zygosaccharomyces rouxii. J Appl Bact 73: 52430.
  • Golden DA, Beuchat LR, Hitchcock HL. 1994. Changes in fatty acid composition of various of Zygosaccharomyces rouxii as influenced by solutes, potassium sorbate and incubation temperature. Int J Food Microbiol 21: 293303.
  • Goldstein J, Pollitt NS, Inouye M. 1990. Major cold shock protein of Escherichia coli. Proc Nat Acad Sci 87: 2837.
  • Goodson M, Rowbury RJ. 1989a. Resistance of acid-habituated Escherichia coli to organic acids and its medical and applied significance. Lett Appl Microbiol 8: 2114.
  • Goodson M, Rowbury RJ. 1989b. Habituation to normal lethal acidity by prior growth of Escherichia coli at a sublethal acid pH value. Lett Appl Microbiol 8: 779.
  • Gould GW. 1989. Drying, raised osmotic pressure and low water activity. In: GouldGW, editor. Mechanisms of action of food preservation procedures. London : Elsvier Applied Science. p 97118.
  • Gould GW. 1999. Overview of methods for approaching microbial stress and their relevance in foods. In: International Symposium Microbial Stress Abstracts; 1999 June 14–6; France. p 87.
  • Gould GW, Christian JHB. 1988. Food preservation by moisture control. In: SeowCC, TengTT, QuahCH, editors. Characterisation of the state of water in foods–biological aspects. London , U. K. : Elsevier.
  • Gounot AM. 1991. Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol 71: 38697.
  • Goverde RLJ, Kusters JG, Huis-In't-Veld JHJ. 1994. Growth rate and physiology of Yersinia enterocolitica; influence of temperature and presence of the virulence plasmid. J Appl Bact 77(1): 96104.
  • Graham JE, Wilkinson BJ. 1992. Staphylococcus aureus osmoregulation: roles of choline, glycine, betaine, proline and taurine. J Bacteriol 174: 271116.
  • Graumann P, Marahiel MA. 1994. The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG and CCAAT sequences in single stranded oligonucleotides. FEBS Lett 338: 15760.
  • Graumann P, Marahiel MA. 1999a. Cold shock response in Bacillus subtilis. J Mol Microbiol Biotech 1(2): 2039.
  • Graumann PL, Marahiel MA. 1999b. Cold shock proteins CspB and CspC are major stationary phase induced proteins in Bacillus subtilis. Arch Microbiol 171(2): 1358.
  • Graumann P, Schroder K, Schmid R, Marahiel MA. 1996. Cold shock stress induced proteins in Bacillus subtilis. J Bacteriol 178: 46119.
  • Greenway DLA, England RR. 1999. The intrinsic resistance of E. coli to various antimicrobial agents requires ppGpp and σs. Lett Appl Microbiol 29(5): 3236.
  • Guillot A, Obis D, Mistou MY. 2000. Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. J Food Microbiol 55(1/3): 4751.
  • Gutierrez C, Abee T, Booth IR. 1995. Physiology of the osmotic stress response in microorganisms. Int J Food Microbiol 28: 23344.
  • Gutierrez C, Ardourel M, Bremer E, Middendorf A, Boos W, Ehman U. 1989. Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalose of Escherichia coli K12. Mol Gen Genet 217: 34754.
  • Hall HK, Karem KL, Foster JW. 1995. Molecular responses of microbes to environmental pH stress. Adv Microbiol Phys 37: 22964.
  • Hebraud M, Potier P. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotech 1(2): 2119.
  • Hendrick JP, Hartl FU. 1993. Molecular chaperone functions of heat shcok proteins. Ann Rev Biochem 62: 34984.
  • Henriques M, Quintas C, Loureiro D. 1997. Extrusion of benzoic acid in Saccharomyces cerevisiae by an energy dependent mechanism. Microbiology 143: 187783.
  • Herbert RA. 1986. The ecology and physiology of psychrophilic microorganisms In: HerbertRA, CoddGA, editors. Microbes in extreme environments. London : The Society for General Microbiology, Academic Press. p 124.
  • Herbert RA. 1989. Microbial growth at low temperature. In: GouldGW, editor. Mechanisms of action of food preservation procedures. London : Elsevier Applied Science. p 7196.
  • Herbert RA, Bell CR. 1977. Growth characteristics of an obligatory psychrophilic Vibrio sp. Arch Microbiol 113: 21520.
  • Heyde M, Portalier H. 1987. Regulation of major outer membrane porin proteins of Escherichia coli K12 by pH. Mol Gen Genet 208(3): 5117.
  • Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer L. 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. Typhimurium and E. coli. Cell 52: 56984.
  • Hill C, O'Driscoll B, Booth I. 1995. Acid adaption and food poisoning microorganisms. Int J Food Microbiol 28: 24554.
  • Holyoak CD, Stratford M, Mcmullin Z, Cole MB, Crimmins K, Brown AJP, Coote PJ. 1996. Activity of the plasma membrane H+-ATPase and optimal glycolytic flux are required for rapid adaption and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62: 315864.
  • Hosono K. 1992. Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol 138: 916.
  • Hunter K, Rose AH. 1972. Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochem Biophys Acta 260: 63953.
  • Iel S-B, Audia JP, Yong K-P, Foster JW. 2002. Autoinduction of the ompR response regulator by acid shock and control of Salmonella enterica acid tolerance response. Molec Microbiol 44(5): 123550.
  • Isam LL, Khambatta ZS, Moluf JL, Akers DF, Martin SE. 1995. Filament formation in Listeria monocytogenes. J Food Prot 58(9): 10313.
  • Jaenicke R. 1990. Protein structure and function at low temperature. In: The Royal Society, editor. Life at low temperatures. Proceedings of a Royal Society Discussion Meeting; 1–2 June 1989; London. London , U.K. : The Royal Society. p 1925.
  • Jensen RH, Woolfolk CA. 1985. Formation of filaments by Pseudomonas putida. Appl Env Microbiol 50: 36472.
  • Jewell JB, Kashket ER. 1991. Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532. Appl Environ Microbiol 57: 282933.
  • Jones PG, Cashel M, Glaser G, Neidhart FC. 1992. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J Bacteriol 174: 39134.
  • Jones PG, Inouye M. 1994. Microreview: the cold shock response–a hot topic. Mol Microbiol 11(5): 8118.
  • Jones PG, Vanbogelen RA, Neidhart FC. 1987. Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169: 20925.
  • Julseth CR, Inniss WE. 1990. Induction of protein synthesis in response to cold shock in the psychrotrophic yeast Trichosporon pullulans. Can J Microbiol 36: 51924.
  • Juneja VK, Davidson PM. 1993. Influence of fatty acid composition on resistance of Listeria monocytogenes to antimicrobials. J Food Prot 56(4): 3025.
  • Kabara JJ, Eklund T. 1991. Organic acids and esters. In: RussellNJ, GouldGW, editors. Food preservatives. Glasgow , U. K. : Blackie. p 2243.
  • Kaenjak A, Graham JE, Wilkinson BJ. 1993. Choline transport activity in Staphylococcus aureus induced by osmotic stress and low phosphate concentrations. J Bacteriol 175: 24006.
  • Kates M, Hagen PO. 1964. Influence of temperature on fatty acid composition of psychrotrophic and mesophilic Serratia spp. Can J Biochem 42: 4818.
  • Kempf B, Bremer E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high osmolarity environments. Arch Microbiol 170: 31930.
  • Killham K, Firestone MK. 1984. Proline transport increases growth efficiency in salt stressed Streptomyces griseus. Appl Environ Microbiol 48: 23941.
  • Klein W, Weber MHW, Marahiel MA. 1999. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern adaption to low temperatures. J Bacteriol 181(17): 53419.
  • Kogut M, Russell NJ. 1984. The growth and phospholipid composition of a moderately halophilic bacterium during adaptation to changes in salinity. Curr Microbiol 10: 958.
  • Kondo K, Inouye M. 1991. TIP1, a cold shock-inducible gene of Saccharomyces cerevisiae. J Biol Chem 266: 173744.
  • Koo SP, Higgins CF, Booth IR. 1991. Regulation of compatible solute accumulation in Salmonella Typhimurium evidence for a glycine betaine efflux system. J Gen Microbiol 137: 261725.
  • Koutsoumanis KP, Kendall PA, Sofos JN. 2003. Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes. Appl Env Microbiol 69(12): 75146.
  • Krebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F. 1983. Studies on the mechanism of the antifungal action of benzoate. Biochem J 214: 65763.
  • Kroll RG, Patchett RA. 1992. Induced acid tolerance in Listeria monocytogenes. Lett Appl Microbiol 14: 2247.
  • Kubo I, Lee SH. 1998. Potentiation of antifungal activity of sorbic acid. J Agric Food Chem 46: 40525.
  • Lambert LA, Abshire K, Blankenhorn D, Slonczewski JL. 1997. Proteins induced in Escherichia coli by benzoic acid. J Bacteriol 179: 75959.
  • Lange R, Hengge-Aronis R. 1991a. Growth phase-regulated expression of bolA and morphology of stationary phase Escherichia coli cells are controlled by the novel sigma factor σs. J Bacteriol 173: 447481.
  • Lange R, Hengge-Aronis R. 1991b. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5: 4959.
  • Lee IS, Lin J, Hall HK, Bearson B, Foster JW. 1995. The stationary-phase sigma factor sigma S (rpoS) is required for a sustained acid tolerance response in virulent Salmonella Typhimurium. Mol Microbiol 17: 15567.
  • Lee IS, Slonczewski JL, Foster JW. 1994. A low-pH inducible, stationary-phase acid tolerance response in Salmonella Typhimurium. J Bacteriol 176: 14226.
  • Leistner L, Russell NJ. 1991. Solutes and low water activity. In: GouldGW, RussellNJ, editors. Food preservatives. London : Blackie and Son Ltd. p 11134.
  • Lelivelt MJ, Kawula TH. 1995. Hsc66, an Hsp70 homolog in Escherichia coli is induced by cold shock but not by heat shock. J Bacteriol 177: 49007.
  • LePage C, Fayolle F, Hermann M, Vandecasteele JP. 1987. Changes in the lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol 133: 10310.
  • Leyer GJ, Johnson EA. 1992. Acid adaption promotes survival of Salmonella spp. in cheese. Appl Environ Microbiol 58: 207580.
  • Leyer GJ, Johnson EA. 1993. Acid adaption induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol 59: 18427.
  • Leyer GJ, Wang LL, Johnson EA. 1995. Acid adaption of Escherichia coli O157:H7 increases survival in acidic foods. Appl Environ Microbiol 61(10): 37525.
  • Lin J, Lee IS, Frey J, Slonczewski, Foster JW 1995. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigela flexneri, and Escherichia coli. J Bacteriol 177(14): 4097104.
  • Lin J, Smith MP, Chapin KC, Baik HS, Bennett GN, Foster JW. 1996. Mechanisms of acid resistance in Enterohaemorrhagic Escherichia coli. Appl Environ Microbiol 62(9): 3094100.
  • Lindquist S. 1986. The heat shock response. Ann Rev Biochem 55: 115191.
  • Lopez CS, Heras H, Garda H, Ruzal S, Sanchez-Rivas C, Rivas E. 2000. Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol 55(1/1): 13742.
  • Lorca G, DeValdez GF. 2001. A low pH inductible stationary phase Acid Tolerance Response in Lactobacillus acidophilus CRL 639. Curr Microbiol 42(1): 215.
  • Lottering EA. 1994. Initial characterization of the cold shock response of Bacillus subtilis. Diss Abst Int B 54(7): 3468.
  • Macris BJ. 1975. Mechanism of benzoic acid uptake by Saccharomyces cerevisiae. Appl Microbiol 30: 5036.
  • Madshus IH. 1988. Regulation of intracellular pH in eukaryotic cells. Biochem J 250: 18.
  • Marechal PA, Martinez De Marnanon I, Poirier I, Gervais P. 1999. The importance of the kinetics of application of physical stresses on the viability of microorganisms: significance for minimal food processing. Trends Food Sci Tech 10: 1520.
  • Marr AG, Ingraham JL. 1962. Effect of temperature on the composition of fatty acids in E. coli. J Bacteriol 84: 12607.
  • Mastronicolis SK, German JB, Megoulas N, Petrou E, Foka P, Smith GM. 1998. Influence of cold shock on the fatty acid composition of different lipid classes of the food-borne pathogen Listeria monocytogenes. Food Microbiol 15(3): 299306.
  • Masuda N, Church GM. 2003. Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48(3): 699712.
  • May G, Faatz E, Villarejo M, Bremer E. 1986. Binding protein dependent transport of glycine betaine and its osmoregulation in Escherichia coli. Mol Gen Genet 205: 22533.
  • Mayr B, Kaplan T, Lechner S, Scherer S. 1996. Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. J Bacteriol 178: 291625.
  • McCarthy SA. 1991. Pathogenicity of non-stressed, heat-stress and resuscitated Listeria monocytogenes 1A1 cells. Appl Env Microbiol 57: 238991.
  • McDonald LC, Fleming HP, Hassan HM. 1990. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl Environ Microbiol 56: 21204.
  • McGarrity JT, Armstrong JB. 1975. The effect of salt on phospholipid fatty acid composition in Escherichia coli K-12. Biochem Biophys Acta 398: 25864.
  • McGibbon L, Russell NJ. 1983. Fatty acid positional distribution in phospholipids of a psychrophilic bacterium during changes in growth temperature. Curr Microbiol 9: 2414.
  • McGovern VP, Oliver JD. 1995. Induction of cold responsive proteins in Vibrio vulnificus. J Bacteriol 177: 41313.
  • Meury J. 1988. Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli. Arch Microbiol 149: 2329.
  • Mihoub F, Mistou MY, Guillot A, Leveau JY, Boubetra A, Billaux F. 2003. Cold adaptation of Escherichia coli: microbiological and proteomic approaches. Int J Food Microbiol 89: 17184.
  • Miller KJ, Wood IM. 1996. Osmoadaptation by Rhizospher bacteria. Ann Rev Microbiol 50: 10136.
  • Mizushima T, Kataoka K, Ogata Y, Inoue R, Sekimizu K. 1997. Increase in negative supercoiling of plasmid DNA Escherichia coli exposed to cold shock. Mol Microbiol 23(2): 3816.
  • Montville TJ. 1997. Principles which influence microbial growth, survival and death in foods. In: DoyleMP, BeuchatLR, MontvilleTJ, editors. Food microbiology fundamentals and frontiers. Washington , D. C. : ASM Press p 1329.
  • Nakagawa T, Fujimoto Y, Uchino M, Miyaji T, Takano, K and Tomizuka N. 2003. Isolation and characterisation of psychrophiles producing cold-active 4bT-galactosidase. Lett Appl Microbiol 37: 1547.
  • Neale EK, Chapman GB. 1970. Effect of low temperature on the growth and fine structure of Bacillus subtilis. J Bacteriol 104: 51828.
  • Neidhart FC, Ingraham JL, Schaeter M. 1990. Physiology of the bacterial cell: a molecular approach. Sunderland , Mass .: Sinauer Associates Inc.
  • Neves L, Pampulha ME, Loureino-Dias MC. 1994. Resistance of food spoilage yeasts to sorbic acid. Lett Appl Microbiol 19: 811.
  • Nikaido H, Varra T. 1985. Molecular basis of bacteria outer membrane permeability. Microbiol Rev 49: 132.
  • O'Byrne CP, Booth IR. 2002. Osmoregulation and its importance to food-borne microorganisms. Int J Food Microbiol 74: 20316.
  • O'Callaghan J, London S. 2000. Growth of Lactococcus lactis strains at low water activity: correlation with the ability to accumulate glycine betaine. Int J Food Microbiol 55: 12731.
  • O'Driscoll B, Gahan C, Hill C. 1996a. Adaptive and tolerance response in Listeria monocytogenes: isolation of an acid tolerant mutant, which demonstrates, increased virulence. Appl Environ Microbiol 62(5): 16938.
  • O'Driscoll B, Gahan C, Hill C. 1996b. Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods during milk fermentation. Appl Environ Microbiol 62(9): 312832.
  • O'Driscoll B, Gahan C, Hill C. 1997. Two-dimensional polyacrylamde gel electrophoresis analysis of the ATR in Listeria monocytogenes LO28. Appl Environ Microbiol 63(7): 267985.
  • Ohno Y, Yana I, Hiramatsu T, Masui M. 1976. Lipids and fatty acids of moderately halophilic bacterium. Biochem Biophys Acta 424: 33750.
  • Olson JC, Nottingham PM. 1980. Temperature in microbial ecology of foods volume 1: factors affecting life and death of microorganisms. International Commission on Microbiological Specifications for Foods. London : Academic Press. p 137.
  • O'Sullivan E, Condon S. 1997. Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microbiol 63(11): 42105.
  • Palumbo SA. 1986. Is refrigeration enough to restrain food-borne pathogens? J Food Prot 49(12): 10039.
  • Panaretou B, Piper PW. 1990. Plasma membrane ATPase action effects several stress tolerances of Saccharomyces cerevisiae and Schizosaccharomyces pombe as well as the extent and duration of the heat shock response. J Gen Microbiol 136: 176370.
  • Panaretou B, Piper PW. 1992. The plasma membrane of yeast acquires a novel heat shock protein (Hsp 30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem 206: 63540.
  • Panoff JM, Legrand S, Thammavongs B, Boutibonnes P. 1994. The cold shock response in Lactococcus lactis subsp. Lactis. Curr Microbiol 29(4): 2136.
  • Park Y-K, Bearson B, Ho Bang S, Bang IS, Foster JW. 1996. Internal pH crisis, lysine decarboxylase and the acid tolerant response of Salmonella typhimurium. Mol Microbiol 20(3): 60511.
  • Phan-Thanh L, Gormon T. 1995. Analysis of heat and cold shock proteins in Listeria by two-dimensional electrophoresis. Electrophoresis 16: 44450.
  • Phillips LE, Humphrey TJ, Lappin-Scott HM. 1998. Chilling invokes different morphologies in two Salmonella enteritidis PT4 strains. J Appl Microbiol 84(5): 8206.
  • Pichereau UV, Harlke A, Auffray Y. 2000. Starvation and osmotic stress induced multi-resistances influence of extracellular compounds. Int J Food Microbiol 55: 13, 1925.
  • Pilkington BJ, Rose AH. 1988. Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailli to sulphite. J Gen Microbiol 134: 282330.
  • Piper P, Mahe Y, Thomson S, Pandjaitan R, Holyoak C, Egner R, Muehlbouer M, Coote P, Kuchler K. 1998. The Pdr12 ABC transporter for the development of weak organic acid resistance in yeast. EMBO J 17(15): 425765.
  • Piper PW, Ortiz-Calderon C, Holyoak C, Coote PJ, Cole MB. 1997. Hsp 30, the integral plasma membrane heat shock protein of yeast, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 2: 1224.
  • Piper PW, Talreja K, Panaretou B, Moradas Ferreira P, Byrne KL, Praekelt UM, Mea-cock PA, Regnacq M, Boucherie H. 1994. Induction of major heat shock proteins of Saccharomyces cerevisiae including plasma membrane HSP30 by ethanol levels of above a critical threshold. Microbiology 140(11): 303188.
  • Pitt JI. 1974. Resistance of some food spoilage yeasts to preservatives. Food Tech Aust 23841.
  • Piuri M, Rivas S, Ruzai SM. 2003. Adaptation to high salt in lactobacillus: role of peptides and proteolytic enzymes. J Appl Microbiol 95: 3729.
  • Pourkomailian B, Booth IR. 1994. Glycine betaine transport by Staphylococcus aureus: evidence for feedback regulation of the activity of two transporter systems. J Gen Microbiol 140: 31318.
  • Prescott LM, Harley JP, Klein DA. 1990. Microbiology. Wm C Brown Publishers.
  • Puettman M, Ade N, Hof H. 1993. Dependence of fatty acid composition of Listeria spp on growth temperature. Res Microbiol 144(4): 27983.
  • Pusey M. 2001. Survival of E. coli O157 in low aw foods. Food Safety Express 2(2): 78.
  • Ray B. 1986. Impact of bacterial injury and repair in food microbiology: its past, present and future. J Food Prot 49(8): 6515.
  • Restaino L, Lenovich LM, Bills S. 1982. Effect of acids and sorbate combinations on the growth of four osmophilic yeasts. J Food Prot 45: 113842.
  • Rose AH. 1968. Physiology of microorganisms at low temperatures. J Appl Bact 31: 1824.
  • Roth LA, Keenan D. 1971. Acid injury of Escherichia coli. Can J Microbiol 17: 10058.
  • Roth WG, Leckie MP, Dietzler DN. 1985a. Osmotic stress drastically inhibits active transport of carbohydrates by Escherichia coli. Biochem Biophys Res Comm 126: 43441.
  • Roth WG, Porter SE, Leckie MP, Dietzler DN. 1985b. Restoration of cell volume and the reversal of carbohydrate transport and growth inhibition of osmotically upshocked Escherichia coli. Biochem Biophys Res Comm 126: 4429.
  • Rowbury RJ. 1995. An assessment of the environmental factors influencing acid tolerance and sensitivity in Escherichia coli, Salmonella spp and other enterobacteria. Lett Appl Microbiol 20: 3337.
  • Rowbury RJ. 1997. Regulatory components, including integration host factor, CysB and H-NS, that influence pH responses in Escherichia coli–a review. Lett Appl Microbiol 24: 31928.
  • Rowbury RJ, Goodson M. 1999. An extracellular stress-sensing protein is activated by heat and UV irradiation as well as by mild acidity, the activation producing as acid tolerance-inducing protein. Lett Appl Microbiol 29: 104.
  • Russell AD. 1982. Factors influencing the efficacy of antimicrobial agents. In: RussellAD, HugoWB, AycliffeGAJ, editors. Principles and practice of disinfectant, preservation and sterilisation. Oxford , U. K. : Blackwell Scientific Publications. p 10733.
  • Russell AD. 1991. Mechanisms of bacterial resistance to non-antibiotics: food additives and food and pharmaceutical preservatives. J Appl Bacteriol 71: 191201.
  • Russell AD, Gould GW. 1988. Resistance of Enterobacteriaceae to preservatives and disinfectants. J Appl Bacteriol Symp Supp 65(17): 167S95S.
  • Russell NJ. 1984. Mechanisms of thermal adaption in bacteria: blueprints for survival. Trends Biochem Sci 9(March): 10812.
  • Russell NJ. 1989. Functions of lipids: structural roles and membrane functions. In: RatledgeC, WilkinsonSG, editors. Microbial lipids. London : Academic Press. p 279365.
  • Russell NJ. 1990. Cold Adaption of microorganisms. In: Life at low temperatures. Proceedings of a Royal Society Meeting; 1-2 June 1989; London. London , U.K. : Royal Society. p 595609.
  • Russell NJ. 1993. Lipids of halophilic and halotolerant microorganisms. In VreelandRH, HochsteinL, editors. Microbiology of extreme and unusual environments. Vol. 1. The halophiles. Boca Raton , Fla .: CRC Press. p 163210.
  • Russell NJ. 2002. Bacterial membranes: the effects of chill storage and food processing-an overview. Int J Food Microbiol 79(1/2): 2734.
  • Russell NJ, Evans RI, TerSteeg PF, Hellemons J, Verheul A, Abee T. 1995. Membranes as a target for stress adaption. Int J Food Microbiol 28: 25561.
  • Russell NJ, Kogut M. 1985. Haloadaption: salt sensing and cell envelope changes. Microbiol Sci 2: 34550.
  • Russell NJ, Kogut M, Kates M. 1985. Phospholipid biosynthesis in the moderately halophilic bacterium Vibrio costicola during adaptation to changing salt concentrations. J Gen Microbiol 131: 7819.
  • Salmond CV, Kroll RG, Booth IR. 1984. The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol 130: 284550.
  • Samelis J, Sofos JN, Kendall PA, Smith GC. 2001. Influence of natural microbial flora on the acid tolerance response of Listeria monocytogenes in a model system of fresh meat decontamination fluids. Appl Environ Microbiol 67(6): 241020.
  • Sanders D, Slayman CL. 1982. Control of intracellular pH: predominant role of oxidative metabolism, not proton transport in the eukaryotic microorganism Neurospora. J Gen Phys 80: 377402.
  • Scott WJ. 1957. Water relations of food spoilage microorganisms. Adv Food Res 7: 83127.
  • Seputiene V, Motiejunas D, Suziedelis K, Tomenius H, Normark S, Melefors O, Suziedeliene E. 2003. Molecular characterisation of the acid inducible asr gene of Escherichia coli and its role in acid stress response. J Bacteriol 185(8): 247584.
  • Serrano R, Kielland-Brandt MC. Fink GR 1986. Yeast plasma membrane ATPase is essential for growth and has homology with Na+ and K+- and Ca2+-ATPases. Nature 319: 68993.
  • Serrano R. 1988. Structure and function of protein translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta 947(1): 128.
  • Serrano R. 1991. Transport across yeast vacuolar and plasma membranes. In: BroachJR, PringleJR, JonesEW, editors. The molecular and cellular biology of the yeast saccharomyces: genome dynamics, protein synthesis and energetics. Cold Spring Harbor , N. Y. : Cold Spring Harbor Laboratory Press. p 52370.
  • Seymour IJ. 1998. The weak acid preservative stress response in S. cerevisiae [DPhil thesis]. University of Nottingham, U.K. .
  • Shaw MK. 1968. Formation of filaments and synthesis of macromolecules at temperatures below the minimum for growth of Escherichia coli. J Bacteriol 95: 22130.
  • Shehata TE, Marr AG. 1975. Effect of temperature on the size of Escherichia cells. J Bacteriol 124: 85762.
  • Siegele DA, Kolter R. 1992. Life after log. J Bacteriol 174: 3458.
  • Sigler K, Höfer M. 1991. Mechanisms of acid extrusion in yeast. Biochim Biophys Acta 1071: 37591.
  • Skandamis PN, Nychas GJE. 2000. Development and evaluation of a model predicting the survival of Escherichia coli O157:H7 NCTC 12900 in home-made eggplant salad at various temperatures, pHs and oregano essential oil concentrations. Appl Environ Microbiol 66(4): 164653.
  • Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL. 1994. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176(6): 172937.
  • Smith LT. 1996. Role of osmolytes in adaption of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces. Appl Environ Microbiol 62: 308893.
  • Sofos JN, Busta FF. 1981. Antimicrobial activity of sorbate. J Food Prot 44(8): 61422.
  • Sperber WH. 1983. Influence of water activity on foodborne bacteria–a review. J Food Prot 46(2): 14250.
  • Splittstoesser DF, Queale DT, Mattick LR. 1978. Growth of Saccharomyces bisporus var. bisporus, a yeast resistant to sorbic acid. Am J Enol Vitic 29(4): 2724.
  • Stimeling KW, Graham JE, Kaenjak A, Wilkinson BJ. 1994. Evidence of feedback (trans) regulation of, and two systems for glycine betaine transport by Staphylococcus aureus. Microbiology 140: 313944.
  • Straka RP, Stokes JL. 1959. Metabolic injury to bacteria at low temperatures. J Bacteriol 78: 1815.
  • Strom AR, Falkenberg P, Landfald B. 1986. Genetics of osmoregulation in Escherichia coli: uptake and biosynthesis of organic osmolytes. FEMS Microbiol Rev 39: 7986.
  • Sutton GC, Quinn PJ, Russell NJ. 1990. The effect of salinity on the composition of fatty acid double-bond isomers and sn-1/sn-2 positional distribution in membrane phospholipids of a moderately halophilic Eubacterium. Curr Microbiol 20: 436.
  • Suutari H. 1995. Effect of growth temperature on lipid fatty acids of four fungi (Aspergillus niger, Neurospora crassa, Penicillium chrysogenum and Trichoderma reesei). Arch Microbiol 164(3): 2126.
  • Tanabe H, Goldstein J, Yang M, Inouye M. 1992. Identification of the promoter region of the Escherichia coli major shock gene, cspA. J Bacteriol 174: 386773.
  • Tetteh GL, Beuchat LR. 2003. Survival, growth and inactivation of acid stressed Shigella flexneri as affected by pH and temperature. Int J Food Microbiol 87: 1318.
  • Thomas DS, Davenport RR. 1985. Zygosaccharomyces bailli–a profile of characteristics and spoilage activities. Food Microbiol 2: 15769.
  • Tovar-Rojo F, Cabrera-Martinez RM, Setlow B, Setlow P. 2003. Studies on the mechanism of the osmoresistance of spores of Bacillus subtilis. J Appl Microbiol 95: 16779.
  • Troller JA. 1980. Influence of water activity on microorganisms in foods. Food Tech 1980(May): 7682.
  • Tsuchiya H, Sato M, Kanematsus N, Kato M, Hoshino Y, Takagi N, Namikawa I. 1987. Temperature-dependent changes in phospholipid and fatty acid composition and membrane lipid fluidity of Yersinia enterocolitica. Lett Appl Microbiol 5: 158.
  • VanBogelen RA, Neidhart FC. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Nat Acad Sci USA 87: 558993.
  • Varela JCS, Van Beekvelt, Planta RJ, Mager WH. 1992. Osmostress-induced changes in yeast gene expression. Mol Microbiol 6(15): 218390.
  • Vasseur C, Baverel L, Hebraud M, Labadie J. 1999. Effect of osmotic, alkaline, acid or thermal stresses on the growth and inhibition of Listeria monocytogenes. J Appl Microbiol 86: 46976.
  • Verduyn C, Postma E, Sceffers WA, Van Dijken JP. 1992. Effect of benzoic acid on metabolic fluxes in yeasts. A continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast 8(7): 50117.
  • Verheul A, Wouters JA, Rombouts FM, Abee T. 1998. A possible role of proP and CaiT in osmoprotection of E. coli by carnitine. J Appl Microbiol 85: 103646.
  • Viegas C, Sa-Correia I. 1991. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanic acid. J Gen Microbiol 137: 64551.
  • Wang N, Yamanaka K, Inouye M. 1999. CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181(5): 16039.
  • Warth AD. 1977. Mechanism of resistance of Saccharomyces bailii to benzoic, sorbic and other weak acids used as food preservatives. J Appl Bacteriol 43: 21530.
  • Warth AD. 1985. Resistance of yeast species to benzoic and sorbic acids and to sulphur dioxide. J Food Prot 48(7): 5649.
  • Warth AD. 1988. Effects of benzoic acid on growth yields of yeasts differing in their resistance to preservatives. Appl Environ Microbiol 57: 34157.
  • Warth AD. 1989. Transport of benzoic and propanoic acids by Zygosaccharomyces bailii. J Gen Microbiol 135: 138390.
  • Warth AD. 1991a. Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae. Appl Environ Microbiol 57(12): 34157.
  • Warth AD. 1991b. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production and intracellular pH. Appl Environ Microbiol 57: 34104.
  • Wheeler KA, Hurdman BF, Pitt JI. 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int J Food Microbiol 12: 14150.
  • Whyte LG, Inniss WE. 1992. Cold shock proteins and acclimation proteins in a psychrotrophic bacterium. Can J Microbiol 38: 12815.
  • Wilkins PO. 1973. Psychrotrophic Gram-positive bacteria: temperature effects on growth and solute uptake. Can J Microbiol 19: 90915.
  • Wilkins PO, Bourgeois R, Murray RGE. 1972. Psychrotrophic properties of Listeria monocytogenes. Can J Microbiol 18: 54351.
  • Willimsky G, Bang H, Fischer G, Marahiel MA. 1992. Characterisation of cspB, a Bacillus subtilus inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 174: 632635.
  • Witter LD, Campbell MF, Azuma Y. 1966. Formation of bacterial pigments at low temperature by psychrophilic pseudomonads. Dev Ind Microbiol 7: 2319.
  • Wouters JA, Rombouts FM, DeVos WM, Kuipers OP, Abee T. 1999. Cold shock proteins and low temperature response of Streptococcus thermophilus CNRZ302. Appl Env Microbiol 65, 443642.
  • Yamanaka K. 1999. Cold shock response in E. coli. J Mol Microbiol Biotech 1(2): 193202.