SEARCH

SEARCH BY CITATION

References

  • Anema S, Lowe EK, Ly Y. 2004. Effect of pH on the viscosity of heated reconstituted skim milk. Int Dairy J 14:5418.
  • Anthon GE, Sekine Y, Watanabe N, Barrett DM. 2002. Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. J Agric Food Chem 50:69.
  • Atkinson AC, Donev AN. 1992. Optimum experimental designs. Oxford : Clarendon Press.
  • Atkinson AC, Bogacka B. 1997. Compound D- and Ds-optimum designs for determining the order of a chemical reaction. Technometrics 39:347356.
  • Atkinson AC, Bogacka B. 2002. Compound and other designs for systems of nonlinear differential equations arising in chemical kinetics. Chemometrics and Intelligent Laboratory Systems 61:1733.
  • Atkinson AC, Bogacka B, Bogacki MB. 1998. D- and T-optimum designs for the kinetics of a reversible chemical reaction. Chemometrics and Intelligent Laboratory Systems 43:185198.
  • Balsa-Canto E, Rodriguez-Fernandez M, Banga JR. 2007. Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation. J Food Eng 82:17888.
  • Blandamer MJ, Engberts JBFN, Gleeson PT, Reis JCR. 2005. Activity of water in aqueous systems: a frequently neglected property. Chem Soc Rev 34:44058.
  • Box GEP, Hunter WG, Hunter JS. 1978. Statistics for experimenters. New York : Wiley & Sons.
  • Brands CMJ, Van Boekel MAJS. 2002. Kinetic modelling of reactions in heated monosaccharide-casein systems. J Agric Food Chem 50:672539.
  • Brul S, Van Gerwen S, Zwietering M. 2007. Modelling microorganisms in food. Cambridge , U.K. : Woodhead Publishing in Food Science and Technology and Nutrition. 294 p.
  • Burnham KP, Anderson DR. 1998. Model selection and inference. A practical information and-theoretic approach. New York : Springer Verlag.
  • Chase AM, Meier HC, Menna VJ. 1962. The non-competitive inhibition and irreversible inactivation of yeast invertase by urea. J Cellular Comp Physiol 59:113.
  • Corney D. 2000. Designing food with Bayesian belief networks. In: ParmeeI, editor. Adaptive computing in design and manufacture. Univ. of Plymouth. p 8394.
  • Corradini MMG, Peleg MM. 2004. A model of non-isothermal degradation of nutrients, pigments and enzymes. J Sci Food Agric 84:21726.
  • Corradini MMG, Peleg MM. 2006a. Linear and non-linear kinetics in the synthesis and degradation of acrylamide in foods and model systems. CRC Crit Rev Food Sci Nutr 46:489517.
  • Corradini MMG, Peleg MM. 2006b. Prediction of vitamins loss during non-isothermal heat processes and storage with non-linear kinetic models. Trends Food Sci Technol 17:2434.
  • Corradini MMG, Normand MMD, Peleg MM. 2005. Calculating the efficacy of heat sterilization processes. J Food Eng 67:5969.
  • Corradini MMG, Normand MMD, Peleg MM. 2006. Expressing the equivalence of non-isothermal and isothermal heat sterilization processes. J Sci Food Agric 86:78592.
  • Cunha LM, Oliveira FAR. 2000. Optimum experimental design for estimating the kinetic parameters of processes described by the first-order Arrhenius model under linearly increasing temperature profiles. J Food Eng 46:5360.
  • Cunha LM, Oliveira FA, Brandao TRSOJC. 1997. Optimal experimental design for estimating the kinetic parameters of the Bigelow model. J Food Eng 33:11128.
  • Cunha LM, Oliveira FAR, Oliveira JC. 1998. Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. J Food Eng 37:17591.
  • Dean A, Voss D. 1999. Design and analysis of experiments. New York : Springer-Verlag.
  • Dolan KD. 2003. Estimation of kinetic parameters for nonisothermal food processes. J Food Sci 68:72841.
  • Einstein A. 1906. Eine neue Bestimmung der Moleküldimensionen (A new way to determine molecular dimensions). Ann Physik 19:289306.
  • Einstein A. 1911. Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen (Message about my work: A new way to determine molecular dimensions.) Ann Physik 34:5912.
  • Fennema OR. 1996. Food chemistry. 3rd ed. New York : Marcel Dekker.
  • Fu B, Labuza TP. 1993. Shelf-life prediction: theory and application. Food Control 4:12533.
  • Gibson AM, Bratchell N, Roberts TA. 1988. Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride, and storage temperature. Int J Food Microbiol 6:15578.
  • Haefner JW. 2005. Modeling biological systems. Principles and applications. 2nd ed. New York : Springer.
  • Halder A, Datta AK, Geedipaldi SSR. 2007. Uncertainty in thermal process calculations due to variability in 1st-order and Weibull kinetic parameters. J Food Sci 72:15567.
  • Hayes MG, Hurley MJ, Larsen LB, Heegaard CW, Magboul AAA, Oliveira JC, McSweeney PH, Kelly AL. 2001. Thermal inactivation kinetics of bovine cathepsin D. J Dairy Res 68:26776.
  • Hindra F, Baik O-D. 2006. Kinetics of quality changes during food frying. Crit Rev Food Sci Nutr 46:39258.
  • Horak FP. 1980. Über die Reaktionskinetik der Sporenabtötung und chemischer Veränderungen bei der thermischen Haltbarmachung von Milch zur Optimieruung von Erhitzungsverfahren [PhD thesis]. Germany : Technical Univ. of Munich.
  • Hu R. 1999. Food product design. A computer-aided statistical approach. Lancaster , Pa .: Technomic Publishing Co.
  • Jay JM, Loessner MJ, Golden DA. 2005. Modern food microbiology. 7th ed. New York : Springer Verlag.
  • Labuza TP. 1983. Reaction kinetics and accelerated tests. Simulation as a function of temperature. In: Saguy I, editor. Computer-aided techniques in food technology. New York : Marcel Dekker. p 71115.
  • Labuza TP. 1984. Application of chemical kinetics to deterioration of foods. J Chem Ed 61:34858.
  • Labuza TP, Fu B. 1995. Use of time-temperature integrators, predictive microbiology, and related technologies for assessing the extent and impact of temperature abuse on meat and poultry products. J Food Saf 15:20127.
  • Laidler KJ. 1987. Chemical kinetics. New York : Harper & Row.
  • Leong LP, Wedzicha BL. 2000. A critical appraisal of the kinetic model for the Maillard browning of glucose with glycine. Food Chem 68:218.
  • Le Meste M, Champion D, Roudaut G, Blond G, Simatos D. 2002. Glass transition and food technology: a critical appraisal. J Food Sci 67:244458.
  • Linnemann AR, Van Boekel MAJS, editors. 2007. Food product design. An integrated approach. Wageningen : Wageningen Academic Publishers. 236 p.
  • Mackey BM, Derrick CM. 1986. Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. J Appl Bacteriol 61:38993.
  • Maeder M, Molloy KJ, Schumacher MM. 1997. Analysis of non-isothermal kinetic measurements. Anal Chim Acta 337:7381.
  • Manski JM, Kretzers IMJ, Van Brenk S, Van Der Goot AJ, Boom RM. 2007. Influence of dispersed particles on small and large deformation properties of concentrated caseinate composites. Food Hydrocolloids 21:7384.
  • Marangoni AG. 2003. Enzyme kinetics. A modern approach. Hoboken , N.J .: Wiley Interscience.
  • Martins SIFS, Van Boekel MAJS. 2004. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem 90:25769.
  • Martins SIFS, Van Boekel MAJS. 2005. Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations. Food Chem 92:43748.
  • McKellarRC, LuX, editors. 2004. Modeling microbial responses in food. Boca Raton , Fla .: CRC Press.
  • Michalski CR, Brackett RE, Hung Y-C, Ezeike GOI. 1999. Use of capillary tubes and plate heat exchanger to validate U.S. Department of Agriculture pasteurization protocols for elimination of Salmonella enteritidis from liquid egg products. J Food Prot 62:1127.
  • Montgomery DC. 1999. Experimental design for product and process design and development. The Statistician 48:159177.
  • Mundt SS, Wedzicha BL. 2003. A kinetic model for the glucose-fructose-glycine browning reaction. J Agric Food Chem 51:36515.
  • Mundt SS, Wedzicha BL. 2007. A kinetic model for browning in the baking of biscuits: effects of water activity and temperature. Lebens Wissen Technol 40:107882.
  • Nahor HB, Scheerlinck N, Verniest R, De Baerdemaeker J, Nicolai BM. 2001. Optimal experimental design for the parameter estimation of conduction heated foods. J Food Eng 48:10919.
  • Nelson KA, Labuza TP. 1994. Water activity and food polymer science: implications of state on Arrhenius and WLF models in predicting shelf life. J Food Eng 22:27189.
  • Nicolaï BM, Verboven P, Scheerlinck N. 2001. The modelling of heat and mass transfer. In: TijskensLMM, HertogMLATM, NicolaïBM, editors. Food process modelling. Woodhead Publishing Ltd., p 6086.
  • Norton T, Da-Wen Sun. 2006. Computational fluid dynamics (CFD)—an effective and efficient design and analysis tool for the food industry: a review. Trends Food Sci Technol 17:60020.
  • Owusu-Apenten RK. 2005. Introduction to food chemistry. Boca Raton , Fla .: CRC Press.
  • Peleg MM. 2003. Calculation of the non-isothermal inactivation patterns of microbes having sigmoidal isothermal semi-logarithmic survival curves. CRC Crit Rev Food Sci Nutr 43:64558.
  • Peleg MM. 2006a. Time to revise thermal processing theories. Food Technol 60(6):92.
  • Peleg M. 2006b. Advanced quantitative microbiology for foods and biosystems: models for predicting growth and inactivation. Boca Raton , Fla .: CRC Press.
  • Peleg M, Cole MB. 1998. Reinterpretation of microbial survival curves. Crit Rev Food Sci Nutr 38:35380.
  • Peleg M, Engel R, Gonzalez-Martinez C, Corradini MG. 2002. Non-Arrhenius and non-WLF kinetics in food systems. J Sci Food Agric 82:134655.
  • Poschet F, Geeraerd AH, Van Loey AM, Hendrickx ME, Van Impe JF. 2005. Assessing the optimal experiment setup for first-order kinetic studies by Monte Carlo analysis. Food Control 16:87382.
  • Roos YH, Karel M, Kokini JL. 1996. Glass transitions in low-moisture and frozen foods: effects on shelf life and quality. Food Technol 50(11):95108.
  • Saguy I, Karel M. 1980. Modeling of quality deterioration during food processing and storage. Food Technol 34:7885.
  • Saguy I, Kopelman IJ, Mizrahi S. 1978. Thermal kinetic degradation of betanin and betalamic acid. J Agric Food Chem 26:3602.
  • Saguy IS, Moskowitz HR. 1999. Integrating the consumer into new product development. Food Technol 53(8):6873.
  • Schmidt SJ. 2004. Water and solids mobility in foods. Adv Food Nutr Res 48:1101.
  • Shimoni EE, Anderson EEM, Labuza TTP. 2001. Reliability of time temperature indicators under temperature abuse. J Food Sci 66:133740.
  • Simpson R, Almonacid S, Teixeira A. 2003. Bigelow's general method revisited: development of a new calculation technique. J Food Sci 68:132433.
  • Slade L, Levine H. 1991. Beyond water activity; recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30:115360.
  • Smolander MM, Alakomi HHL, Ritvanen TT, Vainionpaa JJ, Ahvenainen RR. 2002. Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions. A. Time-temperature indicators as quality-indicating tools. Food Control 15:21729.
  • Stewart WE, Henson TL, Box GEP. 1996. Model discrimination and criticism with single response data. AlChE J 42:305562.
  • Stewart WE, Shon Y, Box GEP. 1998. Discrimination and goodness of fit of multiresponse mechanistic models. AlChE J 44:140412.
  • Taoukis PS, Labuza TP. 1989a. Applicability of time-temperature indicators as shelf life monitors of food products. J Food Sci 54:7838.
  • Taoukis PS, Labuza TP. 1989b. Reliability of time-temperature indicators as food quality monitors under non-isothermal conditions. J Food Sci 54:78992.
  • Tiao GC, Bisgaard S, Hill WJ, Pena D, Stigler SM. 2000. Box on quality and discovery with design, control and robustness. New York : John Wiley & Sons.
  • Van Boekel MAJS. 1996. Statistical aspects of kinetic modeling for food science problems. J Food Sci 61:47785, 489.
  • Van Boekel MAJS. 1999. Testing of kinetic models: usefulness of the multiresponse approach as applied to chlorophyll degradation in foods. Food Res Int 32:2619.
  • Van Boekel MAJS. 2000. Kinetic modelling in food science: a case study on chlorophyll degradation in olives. J Sci Food Agric 80:39.
  • Van Boekel MAJS. 2002. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 74:13959.
  • Van Boekel MAJS 2005. Technological innovation in the food industry: product design. Chapter 6. In: JongenWMF, MeulenbergMTG, ed. Innovation in agri-food systems. Product quality and consumer acceptance. Wageningen: Academic Publishers. p 14772.
  • Van Boekel MAJS. 2007. Key reactions in foods and ways to model them. Chapter 4. In: LinnemannAR, Van BoekelMAJS, editors. Food product design. An integrated approach. Wageningen: Academic Publishers.
  • Van Boekel MAJS, Walstra P. 1995. Use of kinetics in studying heat-induced changes in foods. In: FoxPF, editor. Heat-induced changes in milk. Brussels : Intl. Dairy Federation. p 2250.
  • Van Boekel MAJS, Stein A, Van Bruggen A. 2004. Bayesian statistics and quality modelling in the agro food production chain. Kluwer Academic Press.
  • Walstra P. 2003. Physical chemistry of foods. New York : Marcel Dekker.
  • Wedzicha BL, Roberts CC. 2006. Modelling: a new solution to old problems in the food industry. Food Manuf Efficiency 1:17.
  • Wedzicha BL, Goddard SJ, Zeb A. 1993. Approach to the design of model systems for food additive-food component interactions. Food Chem 47:12932.
  • Whitaker JR, Voragen AGJ, Wong DWS. 2003. Handbook of food enzymology. New York : Marcel Dekker.
  • Xu QS, Liang YZ, Fang KT. 2000. The effects of different experimental designs on parameter estimation in the kinetics of a reversible chemical reaction. Chemometrics Intell Lab Syst 52:15566.