Fatigue of Field-Induced Strain in Antiferroelectric Pb0.97La0.02(Zr0.77Sn0.14Ti0.09)O3 Ceramics

Authors

  • Longjie Zhou,

    1. Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, 70569 Stuttgart, Germany
    Search for more papers by this author
    • *

      Member, American Ceramic Society.

  • André Zimmermann,

    1. Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, 70569 Stuttgart, Germany
    Search for more papers by this author
    • Now at Robert Bosch GmbH, Corporate Research and Development.

  • Yu-Ping Zeng,

    1. Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, 70569 Stuttgart, Germany
    Search for more papers by this author
  • Fritz Aldinger

    1. Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, 70569 Stuttgart, Germany
    Search for more papers by this author

  • J. Roedel—contributing editor

  • Supported by the Deutsche Forschungsgemeinschaft.

Abstract

The fatigue of mechanical strain induced by electric fields was investigated for antiferroelectric Pb0.97La0.02(Zr0.77Sn0.14Ti0.09)O3 ceramics. The material shows a high resistance to fatigue owing to bipolar electric cycling up to 108 cycles. The strain hysteresis loop is still fairly symmetric, whereas the maximum field-induced strain decreases by only 30% of its initial value. The fatigued samples show a damaged microstructure with dendritic macrocracks and microcrack clouds. The fatigue is attributed to a combination of electrochemical and mechanical mechanisms.

Ancillary