Two-Step Sintering of Nanocrystalline ZnO Compacts: Effect of Temperature on Densification and Grain Growth

Authors


  • L. Levinson—contributing editor

†Author to whom correspondence should be addressed. e-mail: mmazaheri@gmail.com

Abstract

Two-step sintering (TSS) was applied on nanocrystalline zinc oxide (ZnO) to control the accelerated grain growth occurring during the final stage of sintering. The grain size of a high-density (>98%) ZnO compact produced by the TSS was smaller than 1 μm, while the grain size of those formed by the conventional sintering method was ∼4 μm. The results showed that the temperature of both sintering steps plays a significant role in densification and grain growth of the nanocrystalline ZnO compacts. Several TSS regimes were analyzed. Based on the results obtained, the optimum regime consisted of heating at 800°C (step 1) and 750°C (step 2), resulting in the formation of a structure containing submicrometer grains (0.68 μm). Heating at 850°C (step 1) and then at 750°C (step 2) resulted in densification and grain growth similar to the conventional sintering process. Lower temperatures, e.g., 800°C (step 1) and 700°C (step 2), resulted in exhaustion of the densification at a relative density of 86%, above which the grains continued to grow. Thermogravimetric analysis results were used to propose a mechanism for sintering of the samples with transmission electron micrographs showing the junctions that pin the boundaries of growing grains and the triple-point drags that result in the grain-boundary curvature.

Ancillary