SEARCH

SEARCH BY CITATION

References

  • 1
    N. Malouf, An introduction to Microelectromechanical Systems Engineering, p. 265. Artech House, Boston, London, 2000.
  • 2
    K. Uozumi, K. Ohsone, and R. M. White, “Generation and Detection of Ultrasonic Lamb Waves in a Thin Deposited Film using Interdigital Transducers,” Appl. Phys. Lett., 43, 9179 (1983).
  • 3
    H. T. Soh, I. Ladabaum, A. Atalar, C. F. Quate, and B. T. Khuri-Jakub, “Silicon Micromachined Ultrasonic Immersion Transducer,” Appl. Phys. Lett., 69, 36746 (1996).
  • 4
    A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, “Capacitive Micromachined Ultrasonic Transducers: Theory and Technology,” J. Aerospace Eng., 16, 7684 (2003).
  • 5
    V. P. Jaecklin, C. Linder, N. F. De Rooij, and J.-M. Moret, “Comb Actuators for xy-Microstages,” Sens Actuators A, 39, 839 (1993).
  • 6
    P. Cheung, R. Horowitz, and R. T. Howe, “Modelling and Position Detection of a Polysilicon Linear Microactuator,” ASME Micormech. Sens, Actuators, Syst., 32, 26978 (1992).
  • 7
    E. Quandt and A. Ludwig, “Magnetostrictive Actuation in Microsystems,” Sens. Actuators, 81, 27580 (2000).
  • 8
    J. F. Scott and C. A. Paz de Araujo, “Ferroelectric Memories,” Science, 246, 14005 (1989).
  • 9
    O. Auciello, J. F. Scott, and R. Ramesh, “The Physics of Ferroelectric Memories,” Phys. Today, 51, 227 (1998).
  • 10
    H. Raeder, F. Tyholdt, W. Booij, F. Calame, N. P. Ostbo, R. Bredesen, K. Prume, G. Rijnders, and P. Muralt, “Taking Piezoelectric Microsystems from the Laboratory to Production,” J. Electroceram., 19, 35762 (2007).
  • 11
    P. Muralt, “Ferroelectric Thin Films for Microsensors and Actuators: A Review,” Micromech. Microeng., 10 [2] 1364 (2000).
  • 12
    A. Kingon, P. Muralt, N. Setter, and R. Waser, “Electroceramic Thin Films for Microelectronics and Microsystems”; in Ceramic Materials for Electronics, Edited by R. C.Buchanan. Mercel Dekker, New York, 2004.
  • 13
    M.-A. Dubois, P. Muralt, D. V. Taylor, and S. Hiboux, “Which PZT Thin Fims for Piezoelectric Microactuator Applications,” Integr. Ferroelectr., 22, 53543 (1998).
  • 14
    J. F. Shepard, P. J. Moses, and S. Trolier-McKinstry, “The Wafer Flexure Technique for the Determination of the Transverse Piezoelectric Coefficient (d31) of PZT Thin Films,” Sens. Actuators A, 71, 1338 (1998).
  • 15
    M.-A. Dubois and P. Muralt, “Measurement of the Effective Transverse Piezoelectric Coefficient e31,f of AlN and PZT Thin Films,” Sens. Actuators A, 77, 10612 (1999).
  • 16
    K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, and S. Tiedke, “Piezoelectric Thin Films: Evaluation of Electrical and Electromechanical Characterizations for MEMS Devices,” IEEE Trans. UFFC, 54, 814 (2007).
  • 17
    P. Luginbuhl, G.-A. Racine, P. Lerch, B. Romanowicz, K. G. Brooks, N. F. D. Rooij, P. Renaud, and N. Setter, “Piezoelectric Cantilever Beams Actuated by PZT Sol–Gel Film,” Sens. Actuators A, 53, 5305 (1996).
  • 18
    A. Kholkin, “Non-Linear Piezoelectric Response in PZT Films,” Ferroelectrics, 238, 23543 (2000).
  • 19
    F. Xu, S. Trolier-McKinstry, W. Ren, B. M. Xu, Z. L. Xie, and K. J. Hemker, “Domain Wall Motion and its Contribution to the Dielectric and Piezoelectric Properties of PZT Films,” J. Appl. Phys., 89, 133648 (2001).
  • 20
    N. A. Pertsev, V. G. Khukhar, H. Kohlstedt, and R. Waser, “Phase Diagrams and Physical Properties of Singel Domain Epitaxial PZT Thin Films,” Phys. Rev. B, 67, 054107 (2003).
  • 21
    M. J. Haun, “Thermodynamic Theory of the PZT Solid Solution System, Part III,” Ferroelectrics, 99, 4554 (1989).
  • 22
    D. A. Berlincourt, C. Cmolik, and H. Jaffe, In Piezoelectric Properties of Polycrystalline PZT Compositions, Proceedings of the IRE, 1960, pp. 2229. Institute of Radio Engineers, New York, 1960.
  • 23
    C. A. Araujo, L. D. MacMillan, B. M. Melnick, J. D. Cuchiaro, and J. F. Scott, “Ferroelectric Memories,” Ferroelectrics, 104, 24156 (1990).
  • 24
    R. E. Jones, P. Zürcher, P. Chou, D. J. Taylor, Y. T. Lii, B. Jiang, P. D. Maniar, and S. J. Gillespie, “Memory Applications Based on Ferroelectric and High Permittivity Dielectric Thin Films,” Microelectr. Eng., 29, 310 (1995).
  • 25
    P. Muralt, “Texture Control and Seeded Nucleation of Nanosize Structures fo Ferroelectric PZT Films,” J. Appl. Phys., 100, 051605 (2006).
  • 26
    S. Hiboux and P. Muralt, “Mixed Titania-Lead Oxide Seed Layers for PZT Growth on Pt(111): A Study on Nucleation, Texture and Properties,” J. Eur. Ceram. Soc., 24, 15936 (2004).
  • 27
    P. Muralt, T. Maeder, L. Sagalowicz, S. Hiboux, S. Scalese, D. Naumovic, R. G. Agostino, N. Xanthopoulos, H. J. Mathieu, L. Patthey, and E. L. Bullock, “Texture Control of PbTiO3 and PZT Thin Films with TiO2 Seeding,” J. Appl. Phys., 83 [7] 383541 (1998).
  • 28
    S. Bühlmann, P. Muralt, and S. VonAllmen, “Site Controlled Nucleation and Growth of Small Ferroelectric PZT Single Crystals,” Appl. Phys. Lett., 84, 26146 (2004).
  • 29
    S. Clemens, T. Schneller, A.van der Hart, F. Peter, and R. Waser, “Registered Growth of Nanoscale Ferroelectric Grains by Template-Controlled Growth,” Adv. Mater., 17, 135761 (2005).
  • 30
    F. Calame and P. Muralt, “Growth and Properties of Gradient Free Sol–Gel Lead Zirconate Titanate Thin Films,” Appl. Phys. Lett., 90, 062907 (2007).
  • 31
    K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish, and R. G. Elliman, “Investigation of Pt/Ti Bilayer Metallization on Silicon for Ferroelectric Thin Film Integration,” J. Appl. Phys., 76, 4667 (1994).
  • 32
    T. Maeder, L. Sagalowicz, and P. Muralt, “Stabilized Platinum Electrodes for PZT Thin Film Deposition using Ti, Zr, and Ta Adhesion Layers,” Jpn. J. Appl. Phys., 37, 200712 (1998).
  • 33
    Q. F. Zhou, M. Cannata, R. J. Meyer, D. J. Van Tol, S. Tadigadapa, W. J. Hughes, K. K. Shung, and S. Trolier-McKinstry, “Fabrication and Characterization fo Micromachined High-Frequency Tonpilz Transducers Derived by PZT Thick Films,” IEEE UFFC, 52, 3507 (2005).
  • 34
    S.-Y. Chen and I.-W. Chen, “Temperature-Time Texture Transition of PZT Thin Films: II, Heat Treatment and Composition Effects,” J. Am. Ceram. Soc., 77, 233744 (1994).
  • 35
    Z. Huang, Q. Zhang, and R. W. Whatmore, “Structural Development in the Early Stages of Annealing of Sol–Gel Prepared Lead Zirconate Titante Thin Films,” J. Appl. Phys., 86, 16629 (1999).
  • 36
    T. Maeder, P. Muralt, M. Kohli, A. Kholkin, and N. Setter, “Pb(Zr,Ti)O3 Thin Films by In-situ Reactive Sputtering on Micromachined Membranes for Micromechanical Applications,” Br. Ceram. Proc., 54, 20618 (1995).
  • 37
    M. Klee, R. Eusemann, R. Waser, W. Brand, and H. Van Hal, “Processing and Electrical Properties of PZT Films: Comparions of Metallo–Organic Decomposition and Sol–Gel Processes,” J. Appl. Phys., 72, 156676 (1992).
  • 38
    K. Amanuma, T. Hase, and Y. Miyasaka, “Crystalliziation Behavior of Sol–Gel Derived PZT Thin Films and the Polarization Switching Effect on Film Microstructure,” Appl. Phys. Lett., 65, 31402 (1994).
  • 39
    N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-Textured, Piezoelectric Pb(Zrx, Ti1-x)O3 Thin Films for MEMS: Integration, Deposition and Properties,” Sens. Actuators A, 105, 16270 (2003).
  • 40
    E. Fujii, R. Takayama, K. Nomura, A. Murata, T. Hirasawa, A. Tomozawa, S. Fujii, T. Kamada, and H. Torii, “Preparation of (001)-Oriented PZT Thin Films and Their Piezoelectric Applications,” IEEE Trans. UFFC, 54, 24318 (2007).
  • 41
    Z. Huang, J. Battat, P. P. Donohue, M. A. Todd, and R. W. Whatmore, “On the Phase Transformation Kinetics in Lead Scandium Tantalate Thin Films,” J. Phys. D: Appl. Phys., 36, 303946 (2003).
  • 42
    K. Brinkman, Y. Wang, D. Su, A. Tagantsev, P. Muralt, and N. Setter, “The Impact of Chemcial Ordering on the Dielectric Properties of Lead Scandium Tantalate Thin Films,” J. Appl. Phys., 102, 044110 (2007).
  • 43
    Z. Huang, M. A. Todd, R. Watton, and R. W. Whatmore, “Sputtered Lead Scandium Tantalate Thin Films: A Microstructural Study,” J. Mater. Sci., 33, 36370 (1998).
  • 44
    K. Okazaki and K. Nagata, “Effects of Grain-Size and Porosity on Electrical and Optical Properties of PLZT Ceramics,” J. Am. Ceram. Soc., 56, 826 (1973).
  • 45
    Y. F. Nye, Physical Properties of Crystals. Oxford University Press, Oxford, 1985.
  • 46
    M. Kohli and P. Muralt, “Poling of Ferroelectric Films,” Ferroelectrics, 225, 15562 (1998).
  • 47
    A. L. Kholkin and N. Setter, “Photo Induced Poling of PZT Thin Films,” Appl. Phys. Lett., 71, 28546 (1997).
  • 48
    R. M. White and V. W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves,” Appl. Phys. Lett., 17, 3146 (1965).
  • 49
    E. Hong, S. Trolier-McKinstry, R. Smith, and S. V. Krishnaswamy, “Vibration of Micromachined Circular Piezoelectric Diaphragms,” IEEE Trans. UFFC, 53, 697706 (2006).
  • 50
    P. Luginbuhl, S. D. Collins, G.-A. Racine, M.-A. Grétillat, N. F. De Rooij, K. G. Brooks, and N. Setter, “Microfabricated Lamb Wave Device Based on PZT Sol–Gel Thin Film for Mechanical Transport of Solid Particles and Liquids,” J. Micromech. Syst., 6, 33746 (1997).
  • 51
    P. Muralt, “Piezoelectric Thin Films for MEMS,” Integr. Ferroelectr., 17, 297307 (1997).
  • 52
    E. Hong, S. Trolier-McKinstry, R. L. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Design of MEMS PZT Circular Diaphragm Actuators to Generate Large Deflections,” J. Microelectromech. Syst., 15 [4] 8329 (2006).
  • 53
    G. Robert, D. Damjanovic, N. Setter, and A. V. Turik, “Preisach Modelling of Piezoelectric Nonlinearity in Ferroelectric Ceramics,” J. Appl. Phys., 89, 506774 (2000).
  • 54
    Q. M. Zhang, H. Wang, N. Kim, and L. E. Cross, “Direct Evaluation of Domain-Wall and Intrinsic Contributions to the Dielectric and Piezoelectric Response and Their Temperature Dependence on Lead Zirconate–Titanate Ceramics,” J. Appl. Phys., 75, 4549 (1994).
  • 55
    J. L. Jones, M. Hoffmann, J. E. Daniels, and A. J. Studer, “Direct Measurement of the Domain Switching Contribution to the Dynamic Piezoelectric Response in Ferroelectric Ceramics,” Appl. Phys. Lett., 89, 092901 (2006).
  • 56
    A. L. Roitburd, “Equilibrium Structure of Epitaxial Layers,” Phys. Stat. Sol. (A), 37, 3293 (1976).
  • 57
    J. S. Speck and W. Pompe, “Domain Configurations Due to Multiple Misfit Relaxation Mechanisms in Epitaxial Ferroelectric Films I. Theory,” J. Appl. Phys., 76, 4667 (1994).
  • 58
    J. S. Speck, A. Seifert, W. Pompe, and R. Ramesh, “Domain Configurations Due to Multiple Misfit Relaxation Mechanisms in Epitaxial Ferroelectric Films II: Experimental Verification and Implications,” J. Appl. Phys., 76, 47783 (1994).
  • 59
    G. Arlt and N. A. Pertsev, “Force Constant and Effective Mass of 90° Domain Walls in Ferroelectric Ceramics,” J. Appl. Phys., 70, 22839 (1991).
  • 60
    N. A. Pertsev and A. Y. Emelyanov, “Domain-Wall Contribution to the Piezoelectric Response of Epitaxial Ferroelectric Thin Films,” Appl. Phys. Lett., 71, 36468 (1997).
  • 61
    N. A. Pertsev and A. Yu.Emelyanov, “Stability Diagram for Elastic Domain in Epitaxial Ferroelectric Thin Films,” Phys. Solid State, 39, 10914 (1997).
  • 62
    M. Kohli, P. Muralt, and N. Setter, “Removal of 90°-Domain Pinning in (100) PZT 15/85 Thin Films by Pulsed Operation,” Appl. Phys. Lett., 72, 32179 (1998).
  • 63
    M. Aplanalp, L. M. Eng, and P. Günter, Appl. Phys. A: Mater. Sci. Process, 66, S231 (1998).
  • 64
    E. L. Colla, S. Hong, D. V. Taylor, A. K. Tagantsev, and N. Setter, “Direct Observation of Region by Region Suppression of the Switchable Polarization (Fatigue) in Pb (Zr,Ti)O3 Thin Film Capacitors with Pt Electrodes,” Appl. Phys. Lett., 72, 27635 (1998).
  • 65
    S. Bühlmann, B. Dwir, J. Baborowski, and P. Muralt, “Size Effect in Mesoscopic Epitaxial Ferroelectric Structures: Increase of Piezoelectric Response with Decreasing Feature Size,” Appl. Phys. Lett., 80, 31957 (2002).
  • 66
    V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, and R. Ramesh, “Dynamics of Ferroelastic Domains in Ferroelectric Thin Films,” Nat. Mater., 2, 437 (2002).
  • 67
    G. Le Rhun, I. Vrejoiu, and M. Alexe, “Piezoelectric Response Hysteresis in the Presence of Ferroelestic 90° Domain Walls,” Appl. Phys. Lett., 90, 012908 (2007).
  • 68
    G. Perçin, A. Atalar, F. L. Degertekin, and B. T. Khuri-Yakub, “Micromachined Two-Dimensional Array Piezoelectrically Actuated Transducers,” Appl. Phys. Lett., 72, 13979 (1998).
  • 69
    P. Muralt, A. Kholkin, M. Kohli, and T. Maeder, “Piezoelectric Actuation of PZT Thin Film Diaphragms at Static and Resonant Conditions,” Sens. Actuators A, 53, 397403 (1996).
  • 70
    J. J. Bernstein, S. L. Finberg, K. Houston, L. C. Niles, H. D. Chen, L. E. Cross, K. K. Li, and K. Udayakumar, “Micromachined High Frequency Ferroelectric Sonar Transducers,” IEEE Trans. UFFC, 44, 9609 (1997).
  • 71
    G. Perci and B. T. Khuri-Yakub, “Micromachined Droplet Ejector Arrays for Controlled Ink-Jet Printing and Deposition,” Rev. Sci. Instr., 73, 21936 (2002).
  • 72
    A. M. Flynn, L. S. Tavrow, S. F. Bart, R. A. Brooks, D. J. Ehrlich, K. R. Udajakumar, and L. E. Cross, “Piezoelectric Micromotors for Microrobots,” J. Microelectromech. Syst., 1, 4451 (1992).
  • 73
    P. Muralt, M. Kohli, T. Maeder, A. Kholkin, K. G. Brooks, N. Setter, and R. Luthier, “Fabrication and Characterization of PZT Thin-Film Vibrators for Micromotors,” Sens. Actuators A, 48, 15765 (1995).
  • 74
    B. Belgacem, F. Calame, and P. Muralt, Design, Modeling, and Fabrication Of Piezoelectric Ultrasonic Transducers, IEEE Ultrasonics Symposium, Rotterdam, 2005, pp. 48790. IEEE, Rotterdam, 2005.
  • 75
    P. Muralt, N. Ledermann, J. Baborowski, A. Barzegar, S. Gentil, B. Belgacem, S. Petitgrand, A. Bosseboeuf, and N. Setter, “Piezoelectric Micromachined Ultrasonic Transducers Based on PZT Thin Films,” IEEE Trans. UFFC, 52, 227688 (2005).
  • 76
    B. Belgacem, F. Calame, and P. Muralt, “Piezoelectric Micromachined Ultrasonic Transducers with Thick PZT Sol–Gel Films,” J. Electroceram., 17, 36973 (2007).
  • 77
    B. H. Piekarski, D. DeVoe, M. Dubey, R. Kaul, J. Conrad, and R. Zeto, “Surface Micromachined Piezoelectric Resonant Beam Filters,” Sens. Actuators A, 91, 31320 (2001).
  • 78
    G. Piazza, R. Abdolvand, G. K. Ho, and F. Ayazi, “Voltage-Tunable Piezoelectrically-Transduced Single Crystal Silicon Micromachined Resonator,” Sens. Actuators A, 111, 718 (2004).
  • 79
    N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J.-P. Pellaux, “Piezoelectric PZT Thin Film Cantilever and Bridge Acoustic Sensors for Miniaturized Photoacoustic Gas Detector,” J. Micromech. Microeng. Syst., 14, 16508 (2004).
  • 80
    J. Baborowski, S. Hediger, P. Muralt, and C. Wüthrich, “Micromachined Fabrication and Characterization of Accelorometers Based on PZT Thin Films,” Ferroelectrics, 224, 28390 (1999).
  • 81
    Y. B. Jeon, R. Sood, J.-H. Jeong, and S.-G. Kim, “MEMS Power Generator with Transverse Mode Thin Film PZT,” Sens. Actuators A, 122, 1622 (2005).
  • 82
    M. Marzencki, S. Basrour, B. Belgacem, P. Muralt, and M. Collin, Comparison of MEMS Mechanical Vibration Energy Scavengers, Nanotech, 2007, Nano Science and Technology Institute, Cambridge, Santa Clara, 2007.
  • 83
    X. M. Wu, T. L. Ren, and L. T. Liu, “Active Damping of a Piezoelectric MEMS Acoustic Sensor,” Integr. Ferroelectr., 80, 31729 (2006).
  • 84
    Y. V. C. Meyer, M. Collet, J. Baborowski, and P. Muralt, “Active Acoustic Isolation of Electronic Microcomponents with Piezoelectrically Transduced Silicon MEMS Devices,” Smart Mater. Struct., 16, 12834 (2007).
  • 85
    Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, “Design of a Novel Thin Film Piezoelectric Accelerometer,” Sens. Actuators A, 56, 2394 (1996).
  • 86
    T. Ikeda, Fundamentals of Piezoelectricity. Oxford University Press, Oxford, 1990.
  • 87
    R. Weigel, D. P. Morgan, J. M. Owens, A. Ballato, K. M. Lakin, K. Hashimoto, and C. C. W. Ruppel, “Microwave Acoustic Materials, Devices, and Applications,” IEEE Trans. Microwave Theory Tech., 50, 73849 (2002).
  • 88
    R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, and J. D. Larson, Thin Film Bulk Acoustic Wave Resonators for Wireless Applications, IEEE Ultrasonics Symposium, Atlanta, 2001, pp. 81321. IEEE, Atlanta, 2001.
  • 89
    M.-A. Dubois, J.-F. Carpentier, P. Vincent, C. Billard, G. Parat, C. Muller, P. Ancey, and P. Conti, “Monolithic Abvove-IC Resonator Technology for Integrated Architectures in Mobile and Wireless Communication,” IEEE Journal of Solid-State Circuits, 41[1] 716 (2006).
  • 90
    K. M. Lakin, K. T. McCarron, and R. E. Rosepp. 9058 In Solidly Mounted Resonators and Filters, IEEE Ultrasonics Symposium, Seattle (Washington, USA), 1995, Edited by M.Levy, S. C.Schneider, B. R.McAvoy. IEEE, Seattle, WA, USA, 1995.
  • 91
    R. Aigner, J. Ella, H.-J. Timme, L. Elbrecht, W. Nessler, and S. Marksteiner, Advancement of MEMS into RF Applications, Electron Devices Meeting IEDM'02, 2002, pp. 897900, IEEE Society , 2002.
  • 92
    R. Lanz and P. Muralt, “Bandpass Filters for 8 GHz using Solidly Mounted Bulk Acoustic Wave Resonators,” IEEE Trans. UFFC, 52, 9364 (2005).
  • 93
    G. G. Fattinger, J. Kaitila, R. Aigner, and W. Nessler, Single-To-Balanced Filters for Mobile Phones Using Coupled Resonator BAW Technology, IEEE Ultrasonics Symposium, Rotterdam (NL), 2005. IEEE, Rotterdam, the Netherlands, 2005.
  • 94
    T. Shiosaki, T. Yamamoto, T. Oda, and A. Kawabata, “Low-Temperature Growth of Piezoelectric AlN Film by rf Reactive Planar Magnetron Sputtering,” Appl. Phys. Lett., 36, 6435 (1980).
  • 95
    M.-A. Dubois and P. Muralt, “Properties of AlN Thin Films for Piezoelectric Transducers and Microwave Filter Applications,” Appl. Phys. Lett., 74, 30324 (1999).
  • 96
    A. Rodriguez-Navarro, W. Otano-Rivera, J. M. Garcia-Ruiz, and R. Messier, “Development of Preferred Orientation in Polycrystalline AlN Thin Films Deposited by rf Sputtering System at Low Temperatures,” J. Mater. Res., 12, 18505 (1997).
  • 97
    M.-A. Dubois and P. Muralt, “Stress and Piezoelectric Properties of AlN Thin Films Deposited onto Metal Electrodes by Pulsed Direct Current Reactive Sputtering.,” J. Appl. Phys., 89, 638995 (2001).
  • 98
    A. Rodriguez-Navarro, W. Otano-Rivera, J. M. Gracia-Ruiz, R. Messier, and L. J. Pilione, “Preparation of Highly Oriented Polycrystalline AIN Thin Films on Glass Deposited at Obliquee-Angle Incidence,” J. Mater. Res., 12, 14 (1997).
  • 99
    J. Bjurström, D. Rosen, I. Katardjiev, V. Yanchev, and I. Petrov, “Dependence of the Electromechancial Coupling on the Degree of Orientation of c-axis Textured Thin AlN Films,” IEEE Trans. UFFC, 51, 134753 (2004).
  • 100
    J. Bjurstrom, G. Wingqvist, and I. Katardjiev, “Synthesis of Textured Thin Film Piezoelectric AlN Films with a Nonzero c-axis Mean Tilt for the Fabrication of Shear Mod Resonators,” IEEE Trans. UFFC, 11, 2095100 (2006).
  • 101
    P. Muralt, J. Antifakos, M. Cantoni, R. Lanz, and F. Martin, Is There a Better Materials for Thin Film BAW Applications than AlN? IEEE Ultrasonics Symposium 2005, Rotterdam, 2005, pp. 31520. IEEE, Rotterdam, 2005.
  • 102
    S. Gevorgian, A. Vorobiev, and T. Lewin, “DC Field and Temperature Dependent Acoustic Resonances in Parallel-Plate Capacitors Based in SrTiO3 and (Ba,Sr)TiO3 Films: Experiment and Modelling,” J. Appl. Phys., 99, 124112 (2006).
  • 103
    E. Gizeli, Biommolecular Sensors. Taylor and Francis, London, 2002.
  • 104
    R. Gabl, H.-D. Feucht, H. Zeininger, G. Eckstein, M. Schreiter, R. Primig, D. Pitzer, and W. Wersing, “First Results on Label Free Detection of DNA and Protein Molecules Using a Novel Integrated Sensor Technology Based on Gravimetric Detection Principles,” Biosens. Bioelectr., 19, 61520 (2004).
  • 105
    S. Rey-Mermet, R. Lanz, and P. Muralt, “Bulk Acoustic Wave Resonators Operating at 8 GHz for Gravimetric Sensing of Organic Films,” Sens. Actuators B, 114, 6816 (2006).
  • 106
    M. Link, M. Schreiter, J. Weber, R. Gabl, D. Pitzer, R. Primig, W. Wersing, M. B. Assouar, and O. Elmazria, “c-Axis Inclined ZnO Films for Shear-Wave Transducers Deposited by Reactive Sputtering Using an Additional Blind,” J. Vac. Sci. Tech. A, 24, 21822 (2006).
  • 107
    J. G. Gualtieri and A. Ballato, “Piezoelectric Materials for Acoustic Wave Applications,” IEEE Trans. UFFC, 41, 539 (1994).
  • 108
    F. Tyholdt, F. Calame, K. Prume, H. Raeder, and P. Muralt, “Chemically Derived Seeding Layer for {100}-Textured PZT Thin Films,” 17, 3114 (2007).
  • 109
    A. Seifert, N. Ledermann, S. Hiboux, and P. Muralt, “Study of the Transverse Piezoelectric Coefficient of PZT Thin Films as a Function of Texture and Composition,” Mater. Res. Soc. Symp. Proc., 596, 53540 (2000).
  • 110
    I. Kanno, S. Fujii, T. Kamada, and R. Takayama, “Piezoelectric Properties of c-axis Oriented PZT Thin Films,” Appl. Phys. Lett., 70, 137880 (1997).
  • 111
    I. Kanno, Y. Yokoyama, H. Kotera, and K. Wasa, “Thermodynamic Study of c-axis Oriented Epitaxial PZT Thin Films,” Phys. Rev. B., 69, 064103 (2004).
  • 112
    J. C. Nino and S. Trolier-McKinstry, “Dielectric, Ferroelectric, and Piezoelectric Properties of (001) BiScO3–PbTiO3 Epitaxial Films Near the Morphotropic Phase Boundary,” J. Mater. Res., 19, 56872 (2004).
  • 113
    T. Yoshimura and S. Trolier-McKinstry, “Transverse Piezoelectric Properties of Epitaxial PbYbNbO3–PbTiO3 Thin Films,” J. Cryst. Growth, 229, 4459 (2001).
  • 114
    J.-P. Maria, J. F. Shepard, S. Trolier-McKinstry, T. R. Watkins, and A. E. Payzant, “Characterization of the Piezoelectric Properties fo (Pb,Ba)(Mg,Nb)O3–PbTiO3 Epitaxial Thin Films,” Appl. Ceram. Technol., 2, 518 (2005).
  • 115
    S. Yokoyama, S. Okamoto, H. Funakubo, T. Iijima, K. Saito, H. Okino, T. Yamamoto, K. Nishida, T. Katoda, and J. Sakai, “Crystal Structure, Electrical Properties, and Mechanical Response of (100)/(001)-Oriented Epitaxial Pb(MgNb)O3–PbTiO3 Films Grown on SrRuO3/SrTiO3 Substrates by Metal–Organic Chemcial Vapor Deposition,” J. Appl. Phys., 100, 054110 (2006).
  • 116
    Q. F. Zhou, Q. Q. Zhang, and S. Trolier-McKinstry, “Structure and Piezoelectric Properties of Sol–Gel Derived (001)-Oriented PbYbNbO3–PbTiO3 Thin Films,” J. Appl. Phys., 94, 3397402 (2003).
  • 117
    Q. Q. Zhang, Q. F. Zhou, and S. Trolier-McKinstry, “Structure and Piezoelectric Properties of Sol–Gel Derived PbYbNbO3–PbTiO3 Thin Films,” Appl. Phys. Lett., 80, 337072 (2002).
  • 118
    N. Bassiri Gharb and S. Trolier-McKinstry, “Dielectric Nonlinearity of Pb(YbNb)O3-PbTiO3 Thin fiLms with {100} and {111} Crystallographic Orientation,” J. Appl. Phys., 97, 064106 (2005).
  • 119
    A. Seifert, N. Ledermann, S. Hiboux, J. Baborowski, P. Muralt, and N. Setter, “Processing Optimization of Solution Derived PZT Thin Films for Piezoelectric Applications,” Integr. Ferroelectr., 35, 15966 (2001).