SEARCH

SEARCH BY CITATION

References

  • 1
    J. Davidovits, “Geopolymers - Inorganic Polymeric New Materials,” J. Therm. Anal., 37 [8] 163356 (1991).
  • 2
    A. Palomo, M. T. Blanco-Varela, M. L. Granizo, F. Puertas, T. Vazquez, and M. W. Grutzeck, “Chemical Stability of Cementitious Materials Based on Metakaolin,” Cem. Concr. Res., 29 [7] 9971004 (1999).
  • 3
    A. Palomo, M. W. Grutzeck, and M. T. Blanco, “Alkali-Activated Fly Ashes - A Cement for the Future,” Cem. Concr. Res., 29 [8] 13239 (1999).
  • 4
    J. G. S. Van Jaarsveld, J. S. J. Van Deventer, and L. Lorenzen, “The Potential Use of Geopolymeric Materials to Immobilise Toxic Metals: Part I. Theory and Applications,” Miner. Eng., 10 [7] 65969 (1997).
  • 5
    M. G. Blackford, J. V. Hanna, K. J. Pike, E. R. Vance, and D. S. Perera, “Transmission Electron Microscopy and Nuclear Magnetic Resonance Studies of Geopolymers for Radioactive Waste Immobilization,” J. Am. Ceram. Soc., 90 [4] 11939 (2007).
  • 6
    A. Fernandez-Jimenez, D. E. Macphee, E. E. Lachowski, and A. Palomo, “Immobilization of Cesium in Alkaline Activated Fly Ash Matrix,” J. Nucl. Mater., 346 [2–3] 18593 (2005).
  • 7
    S. L. Hoyle and M. W. Grutzeck, “Incorporation of Cesium by Hydrating Calcium Aluminosilicates,” J. Am. Ceram. Soc., 72 [10] 193847 (1989).
  • 8
    V. F. F. Barbosa and K. J. D. MacKenzie, “Thermal Behaviour of Inorganic Geopolymers and Composites Derived from Sodium Polysialate,” Mater. Res. Bull., 38 [2] 31931 (2003).
  • 9
    V. F. F. Barbosa and K. J. D. MacKenzie, “Synthesis and Thermal Behaviour of Potassium Sialate Geopolymers,” Mater. Lett., 57 [9–10] 147782 (2003).
  • 10
    C. G. Papakonstantinou, P. Balaguru, and R. E. Lyon, “Comparative Study of High Temperature Composites,” Composites Part B, 32 [8] 63749 (2001).
  • 11
    K. Ikeda, K. Onikura, Y. Nakamura, and S. Vedanand, “Optical Spectra of Nickel-Bearing Silicate Gels Prepared by the Geopolymer Technique, with Special Reference to the Low-Temperature Formation of Liebenbergite (Ni2SiO4),” J. Am. Ceram. Soc., 84 [8] 171720 (2001).
  • 12
    T. Iwahiro, Y. Nakamura, R. Komatsu, and K. Ikeda, “Crystallization Behavior and Characteristics of Mullites Formed from Alumina-Silica Gels Prepared by the Geopolymer Technique in Acidic Conditions,” J. Eur. Ceram. Soc., 21 [14] 25159 (2001).
  • 13
    R. Vallepu, A. Mikuni, R. Komatsu, and K. Ikeda, “Synthesis of Liebenbergite Nano-Crystallites from Silicate Precursor Gels Prepared by Geopolymerization,” J. Miner. Petrol. Sci., 100 [4] 15967 (2005).
  • 14
    W. M. Kriven, J. L. Bell, S. W. Mallicoat, and M. Gordon, “Intrinsic Microstructure and Properties of Metakaolin-Based Geopolymers”; pp. 7186 in Int. Workshop on Geopolymer Binders, Interdependence of Composition, Structure and Properties. Edited byBauhaus-Universität. Weimar, Germany, 2006.
  • 15
    G. H. Beall and H. L. Rittler, “Glass–Ceramics Based on Pollucite”; pp. 30112 in Advances in Ceramics, Vol. 4, Nucleation and Crystallization in Glasses, Edited by J. H.Simmons, D. R.Uhlmann, and G. H.Beall. The American Ceramic Society, Westerville, OH, 1982.
  • 16
    R. S. Hay, T. A. Parthasarathy, and J. R. Welch, “Creep and Stability of Pollucite”; pp. 30112 in Ceramic Transactions, Vol. 52, Low-Expansion Materials, Edited by D. P.Stinton, and S. Y.Limayme. The American Ceramic Society, Westerville, OH, 1995.
  • 17
    S. A. Gallagher and G. J. McCarthy, “Preparation and X-Ray Characterization of Pollucite (CsAlSi2O6),” J. Inorg. Nucl. Chem., 43 [8] 17737 (1981).
  • 18
    N. J. Hess, F. J. Espinosa, S. D. Conradson, and W. J. Weber, “Beta Radiation Effects in Cs137 Substituted Pollucite,” J. Nucl. Mater., 281 [1] 2233 (2000).
  • 19
    H. W. Xu, A. Navrotsky, M. L. Balmer, and Y. L. Su, “Crystal Chemistry and Phase Transitions in Substituted Pollucites Along the CsAlSi2O6–CsTiSi2O6.5 Join: A Powder Synchrotron X-Ray Diffractometry Study,” J. Am. Ceram. Soc., 85 [5] 123542 (2002).
  • 20
    R. M. Barrer and N. McCallum, “Hydrothermal Chemistry of Silicates. Part IV. Rubidium and Cesium Aluminosilicates.,” J. Chem. Soc., Chem. Commun., 12, 402935 (1953).
  • 21
    I. MacLaren, J. Cirre, and C. B. Ponton, “Hydrothermal Synthesis of Pollucite (CsAlSi2O6) Powders,” J. Am. Ceram. Soc., 82 [11] 32424 (1999).
  • 22
    D. C. Palmer, M. T. Dove, R. M. Ibberson, and A. M. Powell, “Structural Behavior, Crystal Chemistry, and Phase Transitions in Substituted Leucite: High-Resolution Neutron Powder Diffraction Studies,” Am. Miner., 82, 1629 (1997).
  • 23
    I. Yanase, H. Kobayashi, Y. Shibasaki, and T. Mitamura, “Tetragonal-to-Cubic Structural Phase Transition in Pollucite by Low-Temperature X-Ray Powder Diffraction,” J. Am. Ceram. Soc., 80 [10] 26935 (1997).
  • 24
    P. Duxson, G. C. Lukey, and J. S. J. Van Deventer, “Thermal Evolution of Metakaolin Geopolymers: Part 1 - Physical Evolution,” J. Non-Cryst. Solids, 352 [52–54] 554155 (2006).
  • 25
    P. Duxson, G. C. Lukey, and J. S. J. Van Deventer, “The Thermal Evolution of Metakaolin Geopolymers: Part 2 - Phase Stability and Structural Development,” J. Non-Cryst. Solids, 353 [22–23] 2186200 (2007).
  • 26
    P. Duxson, G. C. Lukey, and J. S. J. Van Deventer, “Physical Evolution of Na-Geopolymer Derived from Metakaolin up to 1000 Degrees C,” J. Mater. Sci., 42 [9] 304454 (2007).
  • 27
    S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., 60, 30919 (1938).
  • 28
    W. M. Kriven, M. Gordon, and J. Bell, “Geopolymers: Nanoparticulate, Nanoporous Ceramics made under Ambient Conditions”; pp. 4045 in Proceedings of the 62nd Annual Meeting of Microscopy Society of America, Vol. 10. Edited by Charles E.Lyman. Edited Press Syndicate of the University of Cambridge, Savannah, Georgia, 2004.
  • 29
    A. Palomo and J. I. L. De La Fuente, “Alkali-Activated Cementitous Materials: Alternative Matrices for the Immobilisation of Hazardous Eastes - Part I. Stabilisation of Boron,” Cem. Concr. Res., 33 [2] 2818 (2003).
  • 30
    H. Xu and J. S. J. Van Deventer, “The Geopolymerisation of Alumino-Silicate Minerals,” Int. J. Miner. Process., 59 [3] 24766 (2000).
  • 31
    J. L. Bell, P. Sarin, J. L. Provis, R. P. Haggerty, P. E. Driemeyer, P. J. Chupas, J. S. J. Van Deventer, and W. M. Kriven, “Atomic Structure of a Cesium Aluminosilicate Geopolymer: A Pair Distribution Function Study,” Chem. Mater., 20 [14] 476876 (2008).
  • 32
    M. A. Hogan and S. H. Risbud, “Gel-Derived Amorphous Cesium-Aluminosilicate Powders Useful for Formation of Pollucite Glass-Ceramics,” J. Mater. Res., 6 [2] 2179 (1991).
  • 33
    A. C. Pierre, Introduction to Sol–Gel Processing. Kluwer Academic, Norwell, MA, 1998.
  • 34
    P. Yang, J. Stolz, T. Armbruster, and M. E. Gunter, “Na, K, Rb, and Cs Exchange in Heulandite Single Crystals: Diffusion Kinetics,” Am. Mineral., 82 [5–6] 51725 (1997).
  • 35
    R. M. Barrer, Hydrothermal Chemistry of Zeolites. Adademic Press, London, 1982.
  • 36
    P. Duxson, G. C. Lukey, F. Separovic, and J. S. J. Van Deventer, “Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels,” Ind. Eng. Chem. Res., 44 [4] 8329 (2005).
  • 37
    D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use. Robert E. Krieger Publishing Company, Malabar, Florida, 1974.
  • 38
    I. Majchrzak-Kuceba and W. Nowak, “Thermal Analysis of Fly Ash-Based Zeolites,” J. Therm. Anal. Calorim., 77 [1] 12531 (2004).
  • 39
    Y. Kim and R. J. Kirkpatrick, “High-Temperature Multi-Nuclear NMR Investigation of Analcime,” Am. Mineral., 83 [3–4] 33947 (1998).
  • 40
    D. Mazza and M. LuccoBorlera, “On the Substitution of Fe and B for Al in the Pollucite (CsAlSi2O6) Structure,” J. Eur. Ceram. Soc., 17 [14] 176772 (1997).
  • 41
    C. S. Ray, W. H. Huang, and D. E. Day, “Crystallization Kinetics of a Lithia Silica Glass - Effect of Sample Characteristics and Thermal-Analysis Measurement Techniques,” J. Am. Ceram. Soc., 74 [1] 606 (1991).
  • 42
    V. C. S. Reynoso, K. Yukimitu, T. Nagami, C. L. Carvalho, J. C. S. Moraes, and E. B. Araujo, “Crystallization Kinetics in Phosphate Sodium-Based Glass Studied by DSC Technique,” J. Phys. Chem. Solids, 64 [1] 2730 (2003).
  • 43
    A. Marotta, A. Buri, and F. Branda, “Nucleation in Glass and Differential Thermal-Analysis,” J. Mater. Sci., 16 [2] 3414 (1981).
  • 44
    C. J. Brinker and G. W. Scherer, “Sol[RIGHTWARDS ARROW]Gel[RIGHTWARDS ARROW]Glass. 1. Gelation and Gel Structure,” J. Non-Cryst. Solids, 70 [3] 30122 (1985).
  • 45
    H. Rahier, B. VanMele, and J. Wastiels, “Low-Temperature Synthesized Aluminosilicate Glasses. Part II. Rheological Transformations During Low-Temperature Cure and High-Temperature Properties of a Model Compound,” J. Mater. Sci., 31 [1] 805 (1996).
  • 46
    E. M. Levin, C. R. Robbins, and H. F. Mcmurdie, Phase Diagrams for Ceramists. The American Ceramic Society, Columbus, OH, p. 156, Fig 407, 1964.
  • 47
    T. H. Zhao, X. W. Yan, S. J. Cui, and W. Niu, “The Physical and Chemical-Properties of Synthetic and Natural Jadeite for Jewelry,” J. Mater. Sci., 29 [6] 151420 (1994).
  • 48
    J. Zarzycki, M. Prassas, and J. Phalippou, “Synthesis of Glasses from Gels - The Problem of Monolithic Gels,” J. Mater. Sci., 17 [11] 33719 (1982).
  • 49
    H. Rahier, B. VanMele, M. Biesemans, J. Wastiels, and X. Wu, “Low-Temperature Synthesized Aluminosilicate Glasses. Part I. Low-Temperature Reaction Stoichiometry and Structure of a Model Compound,” J. Mater. Sci., 31 [1] 719 (1996).
  • 50
    C. J. Brinker, G. W. Scherer, and E. P. Roth, “Sol[RIGHTWARDS ARROW]Gel[RIGHTWARDS ARROW]Glass. 2. Physical and Structural Evolution during Constant Heating Rate Experiments,” J. Non-Cryst. Solids, 72 [2–3] 34568 (1985).
  • 51
    W. M. Kriven, J. Bell, and M. Gordon, “Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopolymer Matrix Composites”; pp. 22750 in Ceramic Transactions, Vol. 153, Advances in Ceramic Matrix Composites, Edited by N. P.Bansal, J. P.Singh, W. M.Kriven, and H.Schneider. The American Ceramic Society, Westerville, OH, 2003.
  • 52
    J. L. Provis, G. C. Lukey, and J. S. J. Van Deventer, “Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results,” Chem. Mater., 17 [12] 307585 (2005).
  • 53
    L. A. Bursill, J. M. Thomas, and K. J. Rao, “Stability of Zeolites Under Electron-Irradiation and Imaging of Heavy Cations in Silicates,” Nature, 289 [5794] 1578 (1981).
  • 54
    O. Gedeon, K. Jurek, and V. Hulinsky, “Fast Migration of Alkali Ions in Glass Irradiated by Electrons,” J. Non-Cryst. Solids, 246 [1–2] 18 (1999).
  • 55
    P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. Van Deventer, “Understanding the Relationship between Geopolymer Composition, Microstructure and Mechanical Properties,” Colloid Surface A, 269 [1–3] 4758 (2005).
  • 56
    P. Duxson, J. L. Provis, G. C. Lukey, F. Separovic, and J. S. J. Van Deventer, “Si-29 NMR Study of Structural Ordering in Aluminosilicate Geopolymer Gels,” Langmuir, 21 [7] 302836 (2005).
  • 57
    P. Duxson, J. L. Provis, G. C. Lukey, J. S. J. Van Deventer, F. Separovic, and Z. H. Gan, “K-39 NMR of Free Potassium in Geopolymers,” Ind. Eng. Chem. Res., 45 [26] 920810 (2006).
  • 58
    L. Ly, E. R. Vance, D. S. Perera, Z. Aly, and K. Olufson, “Leaching of Geopolymers in Deionised Water,” Adv. Tech. Mater. Mater Proc., [2] 23647 (2006).
  • 59
    J. C. Bailar, Comprehensive Inorganic Chemistry, pp. 46770. Pergamon, New York, 1973.