The demand for nanostructured metal oxide electrodes in optoelectronic devices requires investigation of simple and scalable deposition processes. In this study we demonstrate the flexibility of aerosol-assisted chemical vapor deposition to fabricate single and mixed oxide electrodes. The composition, structure, and morphology can easily be controlled by varying the Zn:Sn ratio of the precursor solution. X-ray diffractometric analysis proved that the structure and composition were strongly dependent on the Zn concentration in the precursor. ZnO, SnO2, and a range of ZnO/SnO2 composite electrodes were fabricated by gradually decreasing the Zn content in the precursor solution. A diverse range of nanostructures were also created as the Zn:Sn ratio was varied. The morphology of the electrodes changed from nanoparticles, to nanoplates and nanocolumns with the change in the Zn:Sn ratio. Diffuse reflectance spectroscopy confirmed the high optical absorption of the materials in the UV region. It was found that by controlling the Zn:Sn ratio of the precursor, the optical properties of the electrodes could be finely tuned between the bandgap (Eg) of ZnO (Eg∼3.31 eV) and SnO2 (Eg∼3.55 eV).