Multilayer structures of ZrB2 containing 30–70 wt% Ti were fabricated using a laser sintering/melting technique. Ti acted as the binding interface for the hard ZrB2 particles. Structural properties and oxidation behavior of laser-sintered samples were studied using high-temperature X-ray diffraction (HTXRD). HTXRD revealed the formation of boride solid solutions (Zr0.61Ti0.39B2, Zr0.2Ti0.8B2), Zr0.3Ti0.7 and TiB whiskers as well as several oxide species (Ti2ZrO and ZrOx) during laser sintering process. Laser-sintered Ti–ZrB2 mixtures had high relative densities (>92%) and hardness values (up to 11.4 GPa). The reactions enhanced dissolution of ZrB2 into Ti, governing the final compositions of the mixtures and facilitating the production of high-density boride solid solutions.