The relationship between yttria concentration and the unit cell parameters in partially and fully stabilized zirconia has been reassessed, motivated by the need to improve the accuracy of phase analysis upon decomposition of t′-based thermal barrier coatings. Compositions ranging from 6 to 18 mol% YO1.5 were synthesized and examined by means of high-resolution X-ray diffraction. Lattice parameters were determined using the Rietveld refinement method, a whole-pattern fitting procedure. The revised empirical relationships fall within the range of those published previously. However, efforts to achieve superior homogeneity of the materials, as well as accuracy of the composition and lattice parameters, provide increased confidence in the reliability of these correlations for use in future studies. Additional insight into the potential sources for scatter previously reported for the transition region (~12–14 mol% YO1.5), where tetragonal and cubic phases have been observed to coexist, is also provided. Implications on the current understanding of stabilization mechanisms in zirconia are discussed.