SEARCH

SEARCH BY CITATION

The dependence of microwave dielectric properties on the crystal structure, bond character, and electronic characteristics of AMoO4 and AWO4 (A = Ni, Mg, Zn) ceramics was investigated. The dielectric constant (K) of specimens was principally affected by the dielectric polarizabilities, molar volume, and electronic oxide polarizabilities. MgMoO4 and AWO4 (A = Ni, Mg, Zn) display a single phase monoclinic wolframite structure, whereas ZnMoO4 is a single phase triclinic wolframite structure. The quality factor (Qf) of AWO4 was higher than that of AMoO4 (A = Mg, Zn); these results were attributed to the packing fraction due to effective ionic size. The temperature coefficient of the resonant frequency (TCF) of the specimens was dependent on the cations' bond valence between the cation and oxygen ions. This suggests the ability to tailor ABO4 microwave K, Qf, and TCF via ionic design rules.