Get access

A High-Temperature-Capacitor Dielectric Based on K0.5Na0.5NbO3-Modified Bi1/2Na1/2TiO3Bi1/2K1/2TiO3


  • This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) under SFB 595, A1. EA acknowledges support for this work by the LOEWE-center AdRIA on adaptronics.

Author to whom correspondence should be addressed. e-mail:


A high-temperature dielectric, (1–x)(0.6Bi1/2Na1/2TiO3–0.4Bi1/2K1/2TiO3)–xK0.5Na0.5NbO3, off the morphotropic phase boundary of the parent matrix 0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3, has been developed for application as a high-temperature capacitor. In addition to temperature-dependent permittivity and dielectric loss, DC conductivity and field-dependent permittivity are reported. These properties are correlated with temperature-dependent structure data measured at different length scales using Raman spectroscopy and neutron diffraction. It is suggested that all materials investigated are ergodic relaxors with two types of polar nanoregions providing different relaxation mechanisms. The most attractive properties for application as high-temperature dielectrics are obtained in a material with = 0.15 at less than 10% variation of relative permittivity of about 2100 between 54°C and 400°C.