Get access

Characterization of a Modified Polyvinylsilazane Preceramic Polymer


Author to whom correspondence should be addressed. e-mail:


This investigation focused on the synthesis and characterization of a modified polyvinylsilazane (PVSZ) polymer. Previously, our group synthesized the PVSZ polymer through the ammonolysis of vinyltrichlorosilane (VTS) in tetrahydrofuran (THF). This material showed promise as a precursor for silicon nitride–silicon carbide-based ceramic materials. Due to the structure of the PVSZ polymer, the ability to stabilize (shelf-life) and dope with metals and metalloids has proven to be difficult. To overcome these problems, a second chlorosilane precursor, dichloromethylsilane, was introduced into the ammonolysis reaction. This polymer proved to be more stable (>3 months before cross-linking) and added a potential doping site on the backbone of the polymer while maintaining ceramic yields greater than 80%. The polymethylvinylsilazane (PMVSZ) polymer was characterized using attenuated total reflectance (ATR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and elemental analysis. The results indicated that the ratio of chlorosilane precursors used plays an important role in the composition of crystallized ceramic material.

Get access to the full text of this article