• Distributed cognition;
  • Scientific cognition;
  • Simulative model-based reasoning;
  • Common coding;
  • Scientific visualization


I present a case study of scientific discovery, where building two functional and behavioral approximations of neurons, one physical and the other computational, led to conceptual and implementation breakthroughs in a neural engineering laboratory. Such building of external systems that mimic target phenomena, and the use of these external systems to generate novel concepts and control structures, is a standard strategy in the new engineering sciences. I develop a model of the cognitive mechanism that connects such built external systems with internal models, and I examine how new discoveries, and consensus on discoveries, could arise from this external-internal coupling and the building process. The model is based on the emerging framework of common coding, which proposes a shared representation in the brain between the execution, perception, and imagination of movement.