SEARCH

SEARCH BY CITATION

References

  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115147.
  • Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence and conditions for 3D viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance, 19, 11621182.
  • Bohan, A., & O’Donoghue, D. (2000). LUDI: A model for geometric analogies using attribute matching. Proceedings of the eleventh artificial intelligence and cognitive science conference (AICS-2000). Galway, Ireland.
  • Cohn, A. (1996). Calculi for qualitative spatial reasoning. In J.Calmet, J. A.Campbell & J.Pfalzgraph (Eds.), Artificial intelligence and symbolic mathematical computation (pp. 124143). London: Springer Verlag.
  • Davies, J., & Goel, A. (2001). Visual analogy in problem solving. Proceedings of the 17th international joint conference on artificial intelligence (IJCAI-01) . Seattle, WA.
  • Eliasmith, C., & Thagard, P. (2001). Integrating structure and meaning: A distributed model of analogical mapping. Cognitive Science, 25(2), 245286.
  • Evans, T. (1968). A program for the solution of geometric-analogy intelligence test questions. In M.Minsky (Ed.), Semantic information processing (pp. 271353). Cambridge, MA: MIT Press.
  • Falkenhainer, B., Forbus, K., & Gentner, D. (1989). The structure–mapping engine: Algorithm and examples. Artificial Intelligence, 41, 163.
  • Ferguson, R. W., & Forbus, K. (1999). GeoRep: A flexible tool for spatial representations of line drawings. Proceedings of the thirteenth international workshop on qualitative reasoning (QR’99). Loch Awe, Scotland.
  • Forbus, K., Ferguson, R., & Gentner, D. (1994). Incremental structure-mapping. Proceedings of the sixteenth annual conference of the cognitive science society . Atlanta, GA.
  • Forbus, K., Ferguson, R., & Usher, J. (2001). Towards a computational model of sketching. Proceedings of the 2001 international conference on intelligent user interfaces IUI’01. Santa Fe, NM.
  • Forbus, K., & Oblinger, D. (1990). Making SME greedy and pragmatic. Proceedings of the twelfth annual conference of the cognitive science society . Cambridge, MA.
  • Forbus, K., & Usher, J. (2002). Sketching for knowledge capture: A progress report. Proceedings of 2002 international conference on intelligent user interfaces IUI’02. San Francisco, CA.
  • Forbus, K., Usher, J., Lovett, A., Lockwood, K., & Wetzel, J. (2008). CogSketch: Open-domain sketch understanding for cognitive science research and for education. Proceedings of the fifth eurographics workshop on sketch-based interfaces and modeling. Annecy, France.
  • Forbus, K., Usher, J., & Tomai, E. (2005). Analogical learning of visual/conceptual relationships in sketches. Proceedings of twentieth national conference on artificial intelligence (AAA1-05) . Pittsburgh, PA.
  • Forbus, K., Tomai, E., & Usher, J. (2003). Qualitative spatial reasoning for visual grouping in sketches. Proceedings on the 17th international workshop on qualitative reasoning, Brasilia, Brazil.
  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155170.
  • Gentner, D. (1989). Mechanisms of analogical learning. In S.Vosniadou & A.Ortony (Eds.), Similarity and analogical reasoning (pp. 199241). London: Cambridge University Press.
  • Gentner, D., Brem, S., Ferguson, R. W., Wolff, P., Markman, A. B., & Forbus, K. D. (1997). Analogy and creativity in the works of Johannes Kepler. In T. B.Ward, S. M.Smith, & J.Vaid (Eds.), Creative thought: An investigation of conceptual structures and processes (pp. 403459). Washington, DC: American Psychological Association.
  • Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. Amercian Psychologist, 52, 4556.
  • Gentner, D., Rattermann, M. J., & Forbus, K. (1993). The roles of similarity in transfer: Separating retrievability from inferential soundness. Cognitive Psychology, 25, 524575.
  • Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint Satisfaction. Cognitive Science, 13(3), 295355.
  • Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104, 427466.
  • Jones, R., & Langley, P. (1995). Retrieval and learning in analogical problem solving. Proceedings of the seventeenth annual conference of the cognitive science society . Pittsburgh, PA.
  • Keane, M. T., & Bradshaw, M. (1988). The incremental analogy machine: A computational model of analogy. In D.Sleeman (Ed.), Third european working session on machine learning (pp. 5362). London: Pitman; San Mateo, CA: Morgan Kaufmann.
  • Klenk, M., Forbus, K., Tomai, E., Kim, H., & Kyckelhahn, B. (2005). Solving everyday physical reasoning problems by analogy using sketches. Proceedings of the twentieth national conference on artificial intelligence. Pittsburgh, PA.
  • Larkey, L., & Love, B. (2003). CAB: Connectionist analogy builder. Cognitive Science, 27, 781794.
  • Lovett, A., Lockwood, K., & Forbus, K. (2008). Modeling cross-cultural performance on the visual oddity task. Proceedings of spatial cognition 2008. Freiburg, Germany.
  • Lowe, D. G. (1989). Organization of smooth image curves at multiple scales. International Journal of Computer Vision, 3, 119130.
  • Markman, A. B., & Gentner, D. (1996). Commonalities and differences in similarity comparisons. Memory & Cognition, 24(2), 235249.
  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: W.H. Freeman.
  • Mitchell, M. (1993). Analogy = making as perception. Cambridge, MA: MIT Press/Bradford.
  • Mokhtarian, F., & Mackworth, A. K. (1986). Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1), 3443.
  • Museros, L., & Escrig, M. T. (2004). A qualitative theory for shape representations and matching. Proceedings of the eighteenth international workshop on qualitative reasoning (QR’04). Evanston, IL.
  • O’Hara, S., & Indurkhya, B. (1995). Adaptation and redescription in the context of geometric proportional analogies. AAAI Fall Symposium on Adaptation of Knowledge for Reuse. Cambridge, MA.
  • Palmer, S. (1999). Vision science: Photons to phenomenology. Cambridge, MA: MIT Press.
  • Parsons, L. M. (1995). Inability to reason about an object’s orientation using an axis and angle of rotation. Journal of Experimental Psychology: Human Perception and Performance, 21, 12591277.
  • Ragni, M., Schleipen, S., & Steffenhagen, F. (2007). Solving proportional analogies: A computational model. Workshop on analogies: Integrating multiple cognitive abilities, CogSci ‘07 , Nashville, TN.
  • Schwering, A., Krumnack, U., Kühnberger, K., & Gust, H. (2007). Using gestalt principles to compute analogies of geometric figures. Proceedings of the twenty-nineth annual conference of the cognitive science society. Nashville, TN.
  • Shepard, R. N., & Cooper, L. A. (1982). Mental sketches and their transformations. Cambridge: MIT Press.
  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701703.
  • Tarr, M. J., Bülthoff, H. H., Zabinski, M., & Blanz, V. (1997). To what extent do unique parts influence recognition across viewpoint? Psychological Science, 8(4), 282289.
    Direct Link:
  • Veselova, O., & Davis, R. (2004). Perceptually based learning of shape descriptions. Proceedings of the nineteenth national conference on artificial intelligence. San Jose, CA.
  • Witkin, A. P. (1989). Scale-space filtering. Proceedings of the eighth international joint conference on artificial intelligence (IJCAI-89). Detroit, MI.