SEARCH

SEARCH BY CITATION

References

  • Aerts, D., & Czachor, M. (2004). Quantum aspects of semantic analysis and symbolic artificial intelligence. Journal of Physics A: Mathematical and General, 37, L123L132.
  • Andrews, M., Vigliocco, G., & Vinson, D. (2009). Integrating experiential and distributional data to learn semantic representations. Psychological Review, 116(3), 463498.
  • Baldwin, T., Bannard, C., Tanaka, T., & Widdows, D. (2003). An empirical model of multiword expression decomposability. In F.Bond, A.Korhonen, D.McCarthy, & A.Villavicencio (Eds.), Proceedings of the ACL 2003 Workshop on Multiword Expressions (pp. 8996). Sapporo, Japan. Stroudsburg, PA: ACL Press.
  • Bannard, C., Baldwin, T., & Lascarides, A. (2003). A statistical approach to the semantics of verb–particles. In F.Bond, A.Korhonen, D.McCarthy, & A.Villavicencio (Eds.), Proceedings of the ACL 2003 Workshop on Multiword Expressions (pp. 6572). Sapporo, Japan. Stroudsburg, PA: ACL Press.
  • Bannard, C., & Callison-Burch, C. (2005). Paraphrasing with bilingual parallel corpora. In K.Knight, H. T.Ng, & K.Oflazer (Eds.), Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (pp. 597604). Ann Arbor, MI. Stroudsburg, PA: ACL Press.
  • Barzilay, R., & Lee, L. (2003). Learning to paraphrase: An unsupervised approach using multiple-sequence alignment. In E.Hovy, M.Hearst, M.Ostendorf (Eds.), Proceedings of the Human Language Technology Conference and Annual Meeting of the North American Chapter of the Association for Computational Linguistics (pp. 1623). Edmonton, AL. Stroudsburg, PA: ACL Press.
  • Blackburn, P., & Bos, J. (2005). Representation and inference for natural language: A first course in computational semantics. Seattle, WA: Stanford: CSLI Press.
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 9931022.
  • Briscoe, E., & Carroll, J. (2002). Robust accurate statistical annotation of general text. In M. G.Rodriguez & C. P. S.Arqujo (Eds.), Proceedings of the Third International Conference on Language Resources and Evaluation (pp. 14991504). Las Palmas, Canary Islands. Paris: ERLA.
  • Bullinaria, J. A., & Levy, J. P. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. Behavior Research Methods, 39, 510526.
  • Clark, S., Coecke, B., & Sadrzadeh, M. (2008). A compositional distributional model of meaning. In P.Bruza, W.Lawless, K.Van Rijsbergen, D.Sofge, B.Coecke, & S.Clark (Eds.), Proceedings of the Second Symposium on Quantum Interaction (pp. 133140). Oxford, England: College Publications.
  • Clark, S., & Pulman, S. (2007). Combining symbolic and distributional models of meaning. In P.Bruza, W.Lawless, K.Van Rijsbergen, D.Sofge, B.Coecke, & S.Clark (Eds.), Proceedings of the AAAI Spring Symposium on Quantum Interaction (pp. 5255). Stanford, CA: AAAI Press.
  • Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.
  • Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8, 240248.
  • Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A. (1990). Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6), 391407.
  • Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58, 1722.
  • Demberg, V., & Keller, F. (2008). Data from eye-tracking corpora as evidence for theories of syntactic processing complexity. Cognition, 101(2), 193210.
  • Denhire, G., & Lemaire, B. (2004). A computational model of children's semantic memory In K.Forbus, D.Gentner, & T.Regier (Eds.), Proceedings of the 26th Annual Meeting of the Cognitive Science Society (pp. 297302). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Dennis, S. (2007). Introducing word order in an LSA framework. In T. K.Landauer, D. S.McNamara, S.Dennis, & W.Kintsch (Eds.), Handbook of latent semantic analysis (pp. 449464). Mahwah, NJ: Erlbaum.
  • Doumas, L. A. A., & Hummel, J. E. (2005). Modeling human mental representations: What works and what doesn’t and why In K. J.Holyoak, & R. G.Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 7391). Cambridge, England: Cambridge University Press.
  • Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery and predication of relational concepts. Psychological Review, 115, 143.
  • Duffy, S. A., Henderson, J. M., & Morris, R. K. (1989). Semantic facilitation of lexical access during sentence processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 791801.
  • Eliasmith, C., & Thagard, P. (2001). Integrating structure and meaning: A distributed model of analogical mapping. Cognitive Science, 25(2), 245286.
  • Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness: A connectionist perspective. Cambridge, MA: MIT Press/Bradford Books.
  • Estes, W. K. (1994). Classification and cognition. New York: Oxford University Press.
  • Fellbaum, C. (1998). WordNet: An electronic database. Cambridge, MA: MIT Press.
  • Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., & Ruppin, E. (2002). Placing search in context: The concept revisited. ACM Transactions on Information Systems, 20(1), 116131.
  • Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 371.
  • Foltz, P. W., Kintsch, W., & Landauer, T. (1998). The measurement of textual coherence with latent semantic analysis. Discourse Process, 15, 85307.
  • Foss, D. J. (1982). A discourse on semantic priming. Cognitive Psychology, 14, 590607.
  • Frank, S., Koppen, M., Noordman, L. G. M., & Vonk, W. (2008). World knowledge in computational models of discourse comprehension. Discourse Processes, 45(6), 429463.
  • Frege, G. (1884). Die grundlagen der arithmetik. Breslau, Germany: W. Koebner.
  • Gentner, D. (1989). The mechanisms of analogical learning. In S.Vosniadou & A.Ortony (Eds.), Similarity and analogical reasoning (pp. 199241). Cambridge, England: Cambridge University Press.
  • Grefenstette, G. (1994). Explorations in automatic thesaurus discovery. Norwell, MA: Kluwer Academic Publishers.
  • Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114(2), 211244.
  • Harris, Z. (1968). Mathematical structures of language. New York: Wiley.
  • Heit, E., & Rubinstein, J. (1994). Similarity and property effects in inductive reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 411422.
  • Hinton, J., & Shallice, T. (1991). Lesioning an attractor network: Investigations of acquired dyslexia. Psychological Review, 98, 7495.
  • Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42(1-2), 177196.
  • Holyoak, K. J., & Hummel, J. E. (2000). The proper treatment of symbols in a connectionist architecture. In E.Dietrich & A.Markman (Eds.), Cognitive dynamics: Conceptual change in humans and machines. (pp. 229264). Cambridge, MA: MIT Press.
  • Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory and Cognition, 15, 332340.
  • Jones, M., & Mewhort, D. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114(1), 137.
  • Kako, E. (1999). Elements of syntax in the systems of three language-trained animals. Animal Learning and Behavior, 27, 114.
  • Kanerva, P. (1988). Sparse distributed memory. Cambridge, MA: MIT Press.
  • Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing in distributed representation with high dimensional random vectors. Cognitive Computation, 1, 139159.
  • Kanerva, P., Kristoferson, J., & Holst, A. (2000). Random indexing of text samples for latent semantic analysis. In L. R.Gleitman, & A. K.Joshi (Eds.), Proceedings of the 22nd Annual Conference of the Cognitive Science Society (p. 1036). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Keller, F., Gunasekharan, S., Mayo, N., & Corley, M. (2009). Timing accuracy of web experiments: A case study using the Webexp software package. Behavior Research Methods, 41(1), 112.
  • Kintsch, W. (1988) April. The role of knowledge in discourse comprehension: A construction–integration model. Psychological Review, 95(2), 163182.
  • Kintsch, W. (2001). Predication. Cognitive Science, 25(2), 173202.
  • Laham, D. R. (2000). Automated content assessment of text using latent semantic analysis to simulate human cognition. Unpublished doctoral dissertation, University of Colorado at Boulder.
  • Lakoff, G. (1977). Linguistic gestalts. In W.A.Beach, S.E.Fox, & S.Philosoph (Eds.), Papers from the 13th regional meeting (pp. 236287). Chicago, IL: Chicago Linguistic Society.
  • Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: the latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104(2), 211240.
  • Landauer, T. K., Laham, D., Rehder, B., & Schreiner, M. E. (1997).How well can passage meaning be derived without using word order: A comparison of latent semantic analysis and humans. In M. G.Shafto & P.Langley (Eds.), Proceedings of the 19th Annual Conference of the Cognitive Science Society (pp. 412417). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lapata, M., & Lascarides, A. (2003). A probabilistic account of logical metonymy. Computational Linguistics, 29(2), 263317.
  • Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In V.DeBuys (Ed.), Proceedings of the Fifth SIGDOC (pp. 2426). New York: ACM.
  • Li, Y., McLean, D., Bandar, Z., O'Shea, J., & Crockett, K. (2006). Sentence similarity based on semantic nets and corpus statistics. IEEE Transactions on Knowledge and Data Engineering, 18(8), 11381149.
  • Lin, D. (1998). Automatic retrieval and clustering of similar words. In P.Isabelle (Ed.), Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics (pp. 768774). Montreal, QC. Stroudsburg, PA: ACL Press.
  • Lin, D., & Pantel, P. (2001). DIRT: discovery of inference rules from text. In F.Provost, & R.Srikant (Eds.), Proceedings of the 7th ACM SIGKDD Conference on Knowledge, Discovery, and Data Mining (pp. 323328). San Francisco: ACM Press.
  • Lowe, W. (2000). What is the dimensionality of human semantic space? In R. M.French, & J. P.Sougné (Eds.), Proceedings of the Sixth Neural Computation and Psychology Workshop (pp. 303311). London: Springer Verlag.
  • Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments & Computers, 28, 203208.
  • Mangalath, P., Quesada, J., & Kintsch, W. (2004). Analogy making as predication using relational information and LSA vectors. In K.Forbus, D.Gentner, & T.Regier (Eds.), Proceedings of the 26th Annual Meeting of the Cognitive Science Society (p. 1623). Chicago, IL: Lawrence Erlbaum Associates.
  • Markman, A. B. (1998). Knowledge representation. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Masson, M. E. (1986). Comprehension of rapidly presented sentences: The mind is quicker than the eye. Journal of Memory and Language, 25, 588604.
  • McDonald, S. (2000). Environmental determinants of lexical processing effort. Unpublished doctoral dissertation, University of Edinburgh.
  • McRae, K., De Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology, 126, 99130.
  • Metcalfe, E. J. (1990). A compositive holographic associative recall model. Psychological Review, 88, 627661.
  • Mitchell, J., & Lapata, M. (2008). Vector-based models of semantic composition. In J.Moore, S.Teufel, J.Aller, & S.Furui (Eds.), Proceedings of ACL-08: HLT (pp. 236244). Columbus, OH. Stroudsburg, PA: ACL Press.
  • Montague, R. (1974). English as a formal language. In R.Montague (Ed.), Formal philosophy (pp. 188221). New Haven, CT: Yale University Press.
  • Morris, R. K. (1994). Lexical and message-level sentence context effects on fixation times in reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 92103.
  • Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92, 289316.
  • Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1999). The University of South Florida word association norms. Available at: http://www.usf.edu/Freeassociation.
  • Neville, H., Nichol, J. L., Barss, A., Forster, K. I., & Garrett, M. F. (1991). Syntactically based sentence processing classes: evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 3, 151165.
  • Nosofsky, R. M. (1984). Choice, similarity, and the context theory of classification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 104114.
  • Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of Experimental Psychology: General, 115, 3957.
  • Nunberg, G., Sag, I., & Wasow, T. (1994). Idioms. Language, 70(3), 491538.
  • O'Seaghdha, P. G. (1989). The dependence of lexical relatedness effects on syntactic connectedness. Journal of Experiment Psychology: Learning, Memory and Cognition, 15, 7387.
  • Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Chicago, IL: University of Illinois Press.
  • Padó, S., & Lapata, M. (2007). Dependency-based construction of semantic space models. Computational Linguistics, 33(2), 161199.
  • Partee, B. (1995). Lexical semantics and compositionality. In L.Gleitman, & M.Liberman (Eds.), Invitation to cognitive science part I: Language (pp. 311360). Cambridge, MA: MIT Press.
  • Partee, B. (2004). Compositionality in formal semantics. Oxford, England, Blackwell Publishing.
  • Pedersen, T., Patwardhan, S., Michelizzi, J. (2004). WordNet::Similarity—Measuring the relatedness of concepts. In S.Dumais, D.Marcu, & S.Roukos (Eds.), HLT-NAACL 2004: Demonstration papers (pp. 3841). Boston, MA. Stroudsburg, PA: ACL Press.
  • Pinker, S. (1994). The language instinct: How the mind creates language. New York: Harper Collins.
  • Plate, T. A. (1991). Holographic reduced representations: Convolution algebra for compositional distributed representations. In J.Mylopoulos, & R.Reiter (Eds.), Proceedings of the 12th International Joint Conference on Artificial Intelligence (pp. 3035). Sydney, Australia. San Mateo, CA: Morgan Kaufmann.
  • Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural Networks, 6(3), 623641.
  • Plate, T. A. (2000). Analogy retrieval and processing with distributed vector representations. Expert Systems: The Journal of Knowledge Engineering, 17(1), 2940.
  • Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46(1–2), 77105.
  • Pullum, G. K., & Scholz, B. C. (2007). Systematicity and natural language syntax. Croatian Journal of Philosophy, 7(21), 375402.
  • Pynte, J., New, B., & Kennedy, A. (2008). A multiple regression analysis of syntactic and semantic influences in reading normal text. Journal of Eye Movement Research, 2(1), 111.
  • Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88, 93134.
  • Resnik, P. (1999). Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research, 11, 95130.
  • Resnik, P., & Diab, M. (2000). Measuring verb similarity. In L. R.Gleitman, & A. K.Joshi (Eds.), Proceedings of the 22nd Annual Conference of the Cognitive Science Society (pp. 399404). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning and Verbal Behaviour, 14, 665681.
  • Ross, B. H. (1984). Remindings and their effects in learning a cognitive skill. Cognitive Psychology, 16, 371416.
  • Ross, B. H. (1987). This is like that: The use of earlier problems and the separation of similarity effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 629639.
  • Ross, B. H. (1989). Distinguishing types of superficial similarities: Different effects on the access and use of earlier problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 456468.
  • Rubenstein, H., & Goodenough, J. B. (1965). Contextual correlates of synonymy. Communications of the ACM, 8(10), 627633.
  • Rumelhart, D. E. McClelland, J. L., & the PDP Research Group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1). Cambridge, MA: MIT Press.
  • Sahlgren, M., Host, A., & Kanerva, P. (2008). Permutations as a means to encode order in word space. In V.Sloutsky, B.Love, & K.McRae (Eds.), Proceedings of the 30th Annual Meeting of the Cognitive Science Society (pp. 13001305). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613620.
  • Simpson, G. B., Peterson, R. R., Casteel, M. A., & Brugges, C. (1989). Lexical and context effects in word recognition. Journal of Experimental Psychology: Learning, Memory and Cognition, 15, 8897.
  • Sloman, S. A., & Rips, L. J. (1998). Similarity as an explanatory construct. Cognition, 65, 87101.
  • Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA, Harvard University Press.
  • Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46, 159216.
  • Spenader, J., & Blutner, R. (2007). Compositionality and systematicity. In G.Bouma, I.KrSmer, & J.Zwarts (Eds.), Cognitive foundations of interpretation (pp. 163174). Amsterdam: KNAW publications.
  • Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognitive Science, 29, 4178.
  • Till, R. E., Mross, E. F., & Kintsch, W. (1988). Time course of priming for associate and inference words in discourse context. Memory and Cognition, 16, 283299.
  • Turney, P. (2006). Similarity of semantic relations. Computational Linguistics, 32(3), 379416.
  • Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37, 141188.
  • Wallach, H. M. (2002). Structured topic models for language. Unpublished doctoral dissertation, University of Cambridge.
  • Weeds, J. (2003). Measures and applications of lexical distributional similarity. Unpublished doctoral dissertation, Department of Informatics, University of Sussex, Brighton.
  • Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn: Classification and prediction methods from statistics, neural nets, machine learning, and expert systems. San Mateo, CA: Morgan Kaufmann.
  • West, R. F., & Stanovich, K. E. (1986). Robust effects of syntactic structure on visual word processing. Journal of Memory and Cognition, 14, 104112.
  • Widdows, D. (2008). Semantic vector products: Some initial investigations. In P.Bruza, W.Lawless, K.Van Rijsbergen, D.Sofge, B.Coecke, & S.Clark (Eds.), Proceedings of the 2nd Symposium on Quantum Interaction (QI-2008). Oxford, England: College Publications.