SEARCH

SEARCH BY CITATION

References

  • Chomsky, N. (1965). Cartesian linguistics. New York: Harper and Row.
  • Chomsky, N. (2000). New horizons in the study of language and mind. Cambridge, England: Cambridge University Press.
  • Doumas, L. A. A., Holyoak, K. J., & Hummel, J. E. (2006). The Problem with using associations to carry binding information. Behavioral and Brain Sciences, 29, 3839.
  • Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery and predication of relational concepts. Psychological Review, 115, 143.
  • Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in Neural Information Processing Systems 9, NIPS 1996 (pp. 155161). Cambridge, MA: The MIT Press.
  • Fodor, J. A. (1981). Representations: Philosophical essays on the foundations of cognitive science. Cambridge, MA: The MIT Press.
  • Fodor, J. (1998). Concepts: Where cognitive science went wrong. New York: Oxford University Press.
  • Gallistel, C. R. (2003). Conditioning from an information processing perspective. Behavioral Process, 62, 89101.
  • Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L. (2008). A rational analysis of rule-based concept learning. Cognitive Science, 32(1), 108154.
  • Hawking, S. (1988). A brief history of time. New York: Bantam Books.
  • Hirschberg, J. (Ed.) (1989) Proceedings of the 27th annual meeting of the association for computational linguistics, Vancouver, British Columbia, June 1989. Association for Computational Linguistics.
  • Hummel, J. E. (2010) Symbolic vs. associative learning. Cognitive Science, 34(7), 1.
  • Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104, 427466.
  • Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-connectionist theory of relational inference and generalization. Psychological Review, 110, 220264.
  • Jaeger, T. F. (2010). Redundancy and reduction: Speakers manage syntactic information density. Cognitive Psychology, 61, 2362.
  • Lee, G. G., & Im Walde, S. S. (2009) Proceedings of the 47th annual meeting of the association for computational linguistics, Singapore, August 2009. Association for Computational Linguistics.
  • Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 11261177.
  • Marr, D. C. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York: Freeman.
  • Ramscar, M., Yarlett, D., Dye, M., Denny, K., & Thorpe, K. (2010) Feature-label-order effects and their implications for symbolic learning. Cognitive Science, 34(7).
  • Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H.Black & W. F.Prokasy (Eds.), Classical Conditioning II: Current research and theory (pp. 6499). New York: Appleton-Century-Crofts.
  • Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.
  • Scholz, B. C., & Pullum, G. K. (2006). Irrational nativist exuberance. In R.Stainton (Ed.), Contemporary debates in cognitive science (pp. 5980). Oxford, England: Basil Blackwel.
  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433460.