SEARCH

SEARCH BY CITATION

References

  • Attneave, F. (1950). Dimensions of similarity. American Journal of Psychology, 63, 516556.
  • Austerweil, J., & Griffiths, T. L. (2008). Analyzing human feature learning as nonparametric Bayesian inference. In D.Koller, Y.Bengio, D.Schuurmans, & L.Bottou (Eds.), Advances in neural information processing systems, Vol. 21. (pp. 97104). Cambridge, MA: MIT Press.
  • Boyton, G. M. (2005). Attention and visual perception. Current Opinion in Neurobiology, 15, 465469.
  • Brunelli, R., & Poggio, T. (1993). Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10), 10421052.
  • Bukach, C. M., Gauthier, I., & Tarr, M. J. (2006). Beyond faces and modularity: The power of an expertise framework. TRENDS in Cognitive Sciences, 10, 159166.
  • Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B. A., Gallant J. L., & RustN. C. (2005). Do we know what the early visual system does? The Journal of Neuroscience, 25(46), 1057710597.
  • Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Willey.
  • Edelman, S., & Intrator, N. (2000). (Coarse coding of shape fragments) + (Retinotopy) = Representation of structure. Spatial Vision, 13, 255264.
  • Garner, W. R. (1970). The stimulus in information processing. American Psychologists, 25, 350358.
  • Gelman, S. A., & Markman, E. M. (1986). Categories and induction in young children. Cognition, 23, 183209.
  • Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49, 585612.
  • Goldstone, R. L., & Son, J. Y. (2005). Similarity. In K. J.Holyonk & R. G.Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 1336). New York: Cambridge University Press.
  • Hahn, U., Chater, N., & Richardson, L. B. (2003). Similarity as transformation. Cognition, 87(1), 132.
  • Haralick, R. M., Shanmugan, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3, 610621.
  • Heeger, D. J. (1993). Modeling simple-cell direction selectivity with normalized half-squared, linear operators. Journal of Neurophysiology, 70(5), 18851898.
  • Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (1996). Computational models of cortical visual processing. Proceedings of National Academy of Sciences USA, 93, 623627.
  • Heisele, B., Serre, T., Pontil, M., Vetter, T., & Poggio, T. (2002). Categorization by learning and combining object parts [electronic version]. Advans in Neural Inoformation Processing Systems, 2, 12391245.
  • Howarth, P., & Ruger, S. (2004). Evaluation of texture features for content-based image retrieval. Paper presented at the International Conference on Image and Video Retrieval.
  • Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 12331258.
  • Kanade, K. (1973). Picture processing system by computer complex and recognition of human faces. Unpublished PhD thesis, Kyoto University.
  • Kersten, D., & Yuille, A. (2003). Bayesian models of object perception. Current Opinion in Neurobiology, 13, 150158.
  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671680.
  • Kreiman, G. (2007). Single unit approached to human vision and memory. Current Opinion in Neurobiology, 17, 471475.
  • Lee, M. D. (1998). Neural feature abstraction from judgments of similarity. Neural Computation, 10, 18151830.
  • Lee, M. D. (1999). An extraction and regularization approach to additive clustering. Journal of Classification, 16, 255281.
  • Lee, M. D. (2001). On the complexity of additive clustering models. Journal of Mathematical Psychology, 45, 131148.
  • Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psychological Bulletin & Review, 15, 115.
  • Lee, M. D., & Navarro, D. J. (2002). Extending the ALCOVE model of category learning to featural stimulus domains. Psychonomic Bulletin & Review, 9, 4358.
  • Liu, M. (2000). Morphing. Instructional Technology Program at the University of Texas at Austin . Available athttp://www.edb.utexas.edu/multimedia/PDFfolder/Morphing.pdf Accessed October 13, 2007.
  • Luce, R. D. (1963). Detection and recognition. In R. D.Luce (Ed.), Handbook of mathematical psychology, Vol. 1. (pp. 103190). New York: Wiley.
  • Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and exemplar models of categorization. Perception & Psychophysics, 53, 4970.
  • Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 18, 837842.
  • Markman, A. B., & Gentner, D. (1993). Structural alignment during similarity comparisons. Cognitive Psychology, 25, 431467.
  • Marr, D. (1982). The philosophy and the approach. In D.Marr (Ed.), Vision (pp. 338). New York: W.H. Freeman and Company.
  • McKone, E., Kanwisher, N., & Duchaine, B. C. (2007). Can generic expertise explain special processing for faces? TRENDS in Cognitive Sciences, 11, 815.
  • Monticelli, A. J., Romero, R., & Asada, E. N. (2008). Fundamentals of simulated annealing. In K. Y.Lee & M. A.El-Sharkawi (Eds.), Modern heuristic optimization techniques (pp. 123146). Hoboken, NJ: John Wiley & Sons.
  • Navarro, D. J., & Griffiths, T. L. (2008). Latent features in similarity judgments: A nonparametric Bayesian approach. Neural Computation, 20, 25972628.
  • Navarro, D. J., & Lee, M. D. (2004). Common and distinctive features in stimulus similarity: A modified version of the contrast model. Psychonomic Bulletin & Review, 11, 961974.
  • Nosofsky, R. M. (1984). Choice, similarity, and the context theory of classification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 104114.
  • Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1), 3957.
  • Nosofsky, R. M. (1989). Further tests of an exemplar-similarity approach to relating identification and categorization. Perception & Psychophysics, 45, 279290.
  • Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C., & Glauthier, P. (1994). Comparing models of rule-based classification learning: A replication and extension of Shepard, Hovland, and Jenkins (1961). Memory & Cognition, 22, 352369.
  • Nosofsky, R. M., & Zaki, S. R. (1998). Dissociations between categorization and recognition in amnesic and normal individuals: An exemplar-based interpretation. Psychological Science, 9, 247255.
    Direct Link:
  • Pessoa, L., Tootell, R. B. H., & Ungerleider, L. G. (2008). Visual perception of objects. In L. R.Squire, D.Berg, F.Bloom, S.Du Lac, A.Ghosh, N., & C.Spitzer. (Eds.), Fundamental neuroscience, 3rd ed. (pp. 10671228). San Diego, CA: Academic Press.
  • Pothos, E. M. (2005). The rules versus similarity distinction. Behavioral and Brain Sciences, 28, 149.
  • Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature Neuroscience, 435, 11021107.
  • Ratcliff, R., Van Zandt, T., & McKoon, G. (1999). Connectionist and diffusion models of reaction time. Psychological Review, 106, 261300.
  • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 10191025.
  • Schyns, P. G., Bonnar, L., & Gosselin, F. (2002). Show me the features! Understanding recognition from the use of visual information. Psychological Science, 35, 402409.
    Direct Link:
  • Schyns, P. G., Goldstone, R. L., & Thibaut, J. P. (1997). The development of features in object concepts. Behavioral and Brain Sciences, 21, 154.
  • Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 411426.
  • Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function II. Psychometrika, 27(2), 219246.
  • Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika, 27, 125140.
  • Shepard, R. N. (1986). Discrimination and generalization in identification and classification: Comment on Nosofsky. Journal of Experimental Psychology: General, 115, 5861.
  • Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237(4820), 13171323.
  • Shepard, R. N., & Arabie, P. (1979). Additive clustering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86(2), 87123.
  • Sloutsky, V. M. (2003). The role of similarity in the development of categorization. Trends in Cognitive Sciences, 7, 246558.
  • Sloutsky, V. M., & Fisher, A. V. (2004). Induction and categorization in young children: A similarity-based model. Journal of Experimental Psychology: General, 133(2), 166188.
  • Tanaka, K. (1993). Neuronal mechanisms of object recognition. Science, 262, 685688.
  • Tenenbaum, J. B. (1996). Learning the structure of similarity. In D. S.Touretzky, M. C.Mozer, & M. E.Hasselmo (Eds.), Advances in neural information processing systems 8, Vol. 8. (pp. 39). Cambridge, MA: MIT Press.
  • Treue, S. (2003). Visual attention: The where, what, how and why of saliency. Current Opinion in Neurobiology, 13, 428432.
  • Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327352.
  • Ullman, M. T. (2001). A neurocognitive perspective on language: The declarative/procedural model. Nature Reviews of Neuroscience, 2, 717726.
  • Ullman, S. (2006). Object recognition and segmentation by a fragment-based hierarchy. TRENDS in Cognitive Sciences, 11, 5864.
  • Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5(7), 682687.
  • Yamauchi, T., Cooper, L. A., Hilton, H. J., Szerlip, N. J., Chen, H. C, & Barnhardt, T. M. (2006). Priming for symmetry detection of three-dimensional figures: Central axes can prime symmetry detection separately from local components. Visual Cognition, 13, 363397.
  • Yamauchi, T., Love, B. C., & Markman, A. B. (2002). Learning nonlinearly separable categories by inference and classification. Journal of Experimental Psychology: Learning, Memory & Cognition, 28(3), 585593.
  • Yamauchi, T., & Markman, A. B. (1998). Category learning by inference and classification. Journal of Memory and Language, 39, 124148.
  • Yamauchi, T., & Markman, A. B. (2000). Inference using categories. Journal of Experimental Psychology: Learning, Memory and Cognition, 26(3), 776795.
  • Yamauchi, T., & Yu, N. (2008). Category labels versus feature labels: Category labels polarize inferential predictions. Memory & Cognition, 36(3), 544553.
  • Yu, N. Y., Yamauchi, T., & Schumacher, J. (2008). Category labels highlight feature interrelatedness in similarity judgment. Paper presented at the 30th Annual Meetings of the Cognitive Science Society, Mahwah, NJ: Erlbaum.
  • Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: Analysis by synthesis? Trends in Cognitive Sciences, 10(7), 301308.
  • Zeigenfuse, M. D., & Lee, M. D. (2008). Finding feature representations of stimuli: Combining feature generation and similarity judgment tasks. Paper presented at the Annual Meeting of the Cognitive Science Society.
  • Zeigenfuse, M. D., & Lee, M. D. (2010). Finding the features that represent stimuli. Acta Psychologica, 133, 283295.