SEARCH

SEARCH BY CITATION

References

  • Agre, P., & Chapman, D. (1987). Pengi: An implementation of a theory of activity. AAAI National Conference. New York: Morgan-Kaufman.
  • Aha, D. W., & Goldstone, R. L. (1992). Concept learning and flexible weighting. In Proceedings of the fourteenth annual conference of the Cognitive Science Society (pp. 534539). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20, 723742.
  • Beer, R. D. (2008). The dynamics of brain-body-environment systems: A status report. In P.Calvo & A.Gomila (Eds.), Handbook of cognitive science: An embodied approach (pp. 99120). Amsterdam, The Netherlands: Elsevier.
  • Bertolini Meli, B. (2006). Thinking with objects: The transformation of mechanics in the seventeenth century. Baltimore: Johns Hopkins University Press.
  • Bruce, V. (1998). In the eye of the beholder: The science of face perception. New York: Oxford University Press.
  • Calbet, J. A. L., Moysi, J. S., Dorado, C., & Rodríguez, L. P. (1998). Bone mineral content and density in professional tennis players. Calcified Tissue International, 62, 491496.
  • Cariani, P. (1993). To evolve an ear: Epistemological implications of Gordon Pask’s electrochemical devices. Systems Research, 10, 1933.
  • Chater, N., & Christiansen, M. H. (2010). Language acquisition meets language evolution. Cognitive Science, 34(7), 11311157.
  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.
  • Cosmides, L., & Tooby, J. (1992). Cognitive adaptations for social exchange. In J. H.Barkow, L.Cosmides, & J.Tooby (Eds.), The adapted mind (pp. 163228). New York: Oxford University Press.
  • Dietrich, E., & Markman, A. B. (2003). Discrete thoughts: Why cognition must use discrete representations. Mind and Language, 18, 95119.
  • Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT Press.
  • Fodor, J. A. (1980). On the impossibility of acquiring more powerful structures. In M.Piatelli-Palmarini, J.Piaget, & N.Chomsky (Eds.), Langauge and learning: The debate between Jean Piaget and Noam Chomsky (pp. 142162). Cambridge, MA: Harvard University Press.
  • Fritzke, B. (1994). Growing cell structures—A self-organizing network for unsupervised and supervised learning. Neural Networks, 7, 14411460.
  • Gelman, R. (1990). First principles organize attention to and learning about relevant data: Number and the animate-inanimate distinction as examples. Cognitive Science, 14, 79106.
  • Gelman, S. A., & Markman, E. (1986). Categories and induction in young children. Cognition, 23, 183209.
  • Gold, E. M. (1967). Language identification in the limit. Information and Control, 16, 447474.
  • Goldstone, R. L., & Steyvers, M. (2001). The sensitization and differentiation of dimensions during category learning. Journal of Experimental Psychology: General, 130, 116139.
  • Goodman, N. (1954). Fact, fiction, and forecast. London: University of London, Athlone Press.
  • Gopnik, A., Glymour, C., Sobel, D., Schulz, L., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 131.
  • Heit, E., & Rubinstein, J. (1994). Similarity and property effects in inductive reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 411422.
  • Jacobs, R. A., & Jordan, M. I. (1992). Computational consequences of a bias towards short connections. Journal of Cognitive Neuroscience, 4, 323336.
  • Jacobs, R. A., Jordan, M. I., & Barto, A. G. (1991). Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks. Cognitive Science, 15, 219250.
  • Johnson, S. P. (2010). How infants learn about the visual world. Cognitive Science, 34(7), 11581184.
  • Jusczyk, P. W., Houston, D. M., & Newsome, M. (1999). The beginnings of word segmentation in English-learning infants. Cognitive Psychology, 39, 159207.
  • Keil, F. (1990). Constraints on constraints. Cognitive Science, 14, 135168.
  • Kemp, C., Goodman, N. D., & Tenenbaum, J. B. (2010). Learning to learn causal models. Cognitive Science, 34(7), 11851243.
  • Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical Bayesian models. Developmental Science, 10, 307321.
  • Kirsh, D. (1995). The intelligent use of space. Artificial Intelligence, 73, 3168.
  • Landy, D., & Goldstone, R. L. (2005). How we learn about things we don’t already understand. Journal of Experimental and Theoretical Artificial Intelligence, 17, 343369.
  • Landy, D. H., Jones, M. N., & Goldstone, R. L. (2008). How the appearance of an operator affects its formal precedence. In Proceedings of the thirtieth annual conference of the Cognitive Science Society (pp. 21092114). Washington, DC: Cognitive Science Society.
  • Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111, 309332.
  • Lupyan, G. (2005). Carving nature at its joints and carving joints into nature: How labels augment category representations. In A.Cangelosi, G.Bugmann, & R.Borisyuk (Eds.), Modeling language, cognition and action: Proceedings of the 9th neural computation and psychology workshop. Singapore: World Scientific.
  • Macario, J. F. (1991). Young children’s use of color in classification: Foods and canonically colored objects. Cognitive Development, 6, 1746.
  • Madole, K. L., & Cohen, L. B. (1995). The role of parts in infants’ attention to from-function correlations. Developmental Psychology, 31, 637648.
  • Markman, E. (1990). Constraints children place on word meanings. Cognitive Science, 14, 5778.
  • Medin, D. L., Ahn, W.-K., Bettger, J., Florian, F., Goldstone, R., Lassaline, M., Markman, A., Rubinstein, J., & Wisniewski, E. (1990). Safe takeoffs-soft landings. Cognitive Science, 14, 169178.
  • Needham, A., & Baillargeon, R. (1998). Effects of prior experience in 4.5-month-old infants’ object segregation. Infant Behavioral Development, 21, 124.
  • Nersessian, N. J. (2009). How do engineering scientists think? Model-based simulation in biomedical engineering laboratories. Topics in Cognitive Science, 1, 730757.
  • Nisbett, R., Krantz, D. H., Jepson, C., & Kunda, Z. (1983). The use of statistical heuristics in everyday inductive reasoning. Psychological Review, 90, 339363.
  • Pask, G. (1958). Physical analogues to the growth of a concept. Mechanization of thought processes, Symposium 10, National Physical Laboratory, November 24–27 (pp. 765794). London: H.M.S.O.
  • Patsenko, E. G. & Altmann, E. M. (2010). How planful is routine behavior? A selective-attention model of performance in the Tower of Hanoi. Journal of Experimental Psychology: General, 139, 95116.
  • Rocha, L. M., & Hordijk, W. (2005). Material representations: From the genetic code to the evolution of cellular automata. Artificial Life, 11, 189214.
  • Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.
  • Rogers, T. T., & McClelland, J. L. (2008). Precise of semantic cognition, a parallel distributed processing approach. Behavioral and Brain Sciences, 31, 689749.
  • De Sa, V. R., & Ballard, D. H. (1998). Category learning through multimodality sensing. Neural Computation, 10, 10971117.
  • Senghas, A., Kita, S., & Özyürek, A. (2004). Children creating core properties of language: Evidence from an emerging sign language in Nicaragua. Science, 305, 17791782.
  • Shepard, R. N. (1984). Ecological constraints on internal representation: Resonant kinematics of perceiving, imaging, thinking, and dreaming. Psychological Review, 91, 417447.
  • Simon, H. A. (1969). The architecture of complexity. In The sciences of the artificial (pp. 192229). Cambridge, MA: MIT Press.
  • Sloutsky, V. M., & Fisher, A. V. (2008). Attentional learning and flexible induction: How mundane mechanisms give rise to smart behaviors. Child Development, 79, 639651.
  • Sloutsky, V. M. (2010). From perceptual categories to concepts: what develops?. Cognitive Science, 34(7), 12441286.
  • Smith, L. B., Colunga, E., & Yoshida, H. (2010). Knowledge as process: contextually cued attention and early word learning. Cognitive Science, 34(7), 12871314.
  • Smith, L. B., Jones, S., Landau, B., Gershkoff-Stowe, L., & Samuelson, L. (2002). Object name learning provides on-the-job training for attention. Psychological Science, 13, 1319.
    Direct Link:
  • Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14, 2956.
  • Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 8996.
  • Thompson, A., Layzell, P., & Zebulum, R. S. (1999). Explorations in design space: Unconventional electronics design through artificial evolution. IEEE Transactions on Evolutionary Computation, 3, 167196.
  • Twyman, A. D., & Newcombe, N. S. (2010). Five reasons to doubt the existence of a geometric module. Cognitive Science, 34(7), 13151356.
  • Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural Computation, 8, 13411390.