SEARCH

SEARCH BY CITATION

References

  • Ahissar, M., & Hochstein, S. (2000). The spread of attention and learning in feature search: Effects of target distribution and task difficulty. Vision Research, 40, 13491364.
  • Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual fields. Psychological Science, 16, 637643.
    Direct Link:
  • Alvarez, G. A., & Franconeri, S. (2005). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7, 110.
  • Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13), 110.
  • Andersen, G. J. (1990). Focused attention in three-dimensional space. Perception and Psychophysics, 47, 112120.
  • Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26, 834846.
  • Ballard, D. H. (1986). Cortical connections and parallel processing: Structure and function. Behavioral & Brain Sciences, 9, 67120.
  • Banich, M. T., & Federmeier, K. D. (1999). Categorical and metric spatial processes distinguished by task demands and practice. Journal of Cognitive Neuroscience, 11(2), 153166.
  • Carlson, L. A., & Van Deman, S. (2004). The space in spatial language. Journal of Memory and Language, 51, 418436.
  • Castiello, U., & Umiltà, C. (1990). Size of the attentional focus and efficiency of processing. Acta Psychologia, 73, 195209.
  • Cavanagh, P. (2004). Attention routines and the architecture of selection. In M. I.Posner (Ed.), Cognitive neuroscience of attention (pp. 1328). New York: Guilford Press.
  • Cavanagh, P., & Alvarez, G. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9, 349354.
  • Cavanagh, P., Labianca, A. T., & Thornton, I. M. (2001). Attention-based visual routines: Sprites. Cognition, 80, 4760.
  • Chen, Q., Marshall, J. C., Weidner, R., & Fink, G. R. (2009). Zooming in and zooming out of the attentional focus: An fMRI study. Cerebral Cortex, 19, 805819.
  • Chen, Y., Martinez-Conde, S., Macknik, S. L., Bereshpolova, Y., Swadlow, H. A., & Alonso, J.-M. (2008). Task difficulty modulates the activity of specific neuronal populations in primary visual cortex. Nature Neuroscience, 11, 974982.
  • Chong, S. C., & Treisman, A. (2005). Attentional spread in the statistical processing of visual displays. Perception and Psychophysics, 67, 113.
  • Cohen, A., & Ivry, R. (1989). Illusory conjunctions inside and outside of the focus of attention. Journal of Experimental Psychology: Human Perception and Performance, 15, 650663.
  • Delis, D., Robertson, L., & Efron, R. (1986). Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia, 24, 205214.
  • Edwards, G., & Moulin, B. (1998). Toward the simulation of spatial mental images using the Voronoï model. In P.Oliver & K. P.Gapp (Eds.), Representation and processing of spatial expressions (pp. 163200). Mahwah, NJ: LEA.
  • Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123, 161177.
  • Egly, R., & Homa, D. (1984). Sensitization of the visual field. Journal of Experimental Psychology: Human Perception and Performance, 10, 778793.
  • Eriksen, C. W., & St. James, J. D. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception and Psychophysics, 40, 225240.
  • Eriksen, C. W., & Yeh, Y. Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11, 583597.
  • Eurich, C. W., & Schwegler, H. (1997). Coarse coding: Calculation of the resolution achieved by a population of large receptive field neurons. Biological Cybernetics, 76, 357363.
  • Fahle, M., & Poggio, T. (1981). Visual hyperacuity: Spatiotemporal interpolation in human vision. Philosophical Transactions of the Royal Society of London: Series B, 213, 451477.
  • Fazl, A., Grossberg, S., & Mingolla, E. (2009). View-invariant object category learning, recognition, and search: How spatial and object attention are coordinated using surface-based attentional shrouds. Cognitive Psychology, 58, 148.
  • Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, S. J., & Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees? Nature, 382, 626628.
  • Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, S. J., & Dolan, R. J. (1997). Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. Brain, 120, 17791791.
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 10301044.
  • Franconeri, S. L., Alvarez, G. A., & Enns, J. T. (2005). How many locations can be selected at once? Journal of Experimental Psychology: Human Perception and Performance, 33, 10031012.
  • Gobell, J., & Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size. Psychological Science, 16, 644651.
    Direct Link:
  • Greenwood, P. M., & Parasuraman, R. (2004). The scaling of spatial attention in visual search and its modification in healthy aging. Perception & Psychophysics, 66, 322.
  • Hahn, S., & Kramer, A. F. (1998). Further evidence for the division of attention among non-contiguous locations. Visual Cognition, 5, 217256.
  • Harvey, M., & Milner, A. D. (1995). Bálint’s patient. Cognitive Neuropsychology, 12, 261264.
  • Hayward, W. G., & Tarr, M. J. (1995). Spatial language and spatial representation. Cognition, 55, 3984.
  • Hellige, J. B. (1995). Hemispheric asymmetry for components of visual information processing. In R. J.Davidson & K.Hugdahl (Eds.), Brain asymmetry (pp. 99121). Cambridge, MA: The MIT Press.
  • Hellige, J. B., Laeng, B., & Michimata, C. (2010). Processing asymmetries in the visual system. In K.Hugdahl & R.Westerhausen (Eds.), The two halves of the brain: Information processing in the cerebral hemispheres (pp. 379415). Cambridge, MA: The MIT Press.
  • Hellige, J. B., & Michimata, C. (1989). Categorization versus distance: Hemispheric differences for processing spatial information. Memory & Cognition, 17, 770776.
  • Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations. In D. E.Rumelhart & D. L.McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1: Foundations (pp. 77109). Cambridge, MA: The MIT Press.
  • Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57, 787795.
  • Holmes, G., & Horax, G. (1919). Disturbances of spatial orientation and visual attention, with loss of stereoscopic vision. Archives of Neurology and Psychiatry, 1, 385407.
  • Huang, L., Treisman, A., & Pashler, H. (2007). Characterizing the limits of human visual awareness. Science, 317, 823825.
  • Hübner, R. (1998). Hemispheric differences in global/local processing revealed by same–different judgments. Visual Cognition, 5, 457478.
  • Hübner, R., & Studer, T. (2009). Functional hemispheric differences for the categorization of global and local information in naturalistic stimuli. Brain and Cognition, 69, 1118.
  • Hummel, J. E., & Stankiewicz, B. J. (1998). Two roles for attention in shape perception: A structural description model of visual scrutiny. Visual Cognition, 5, 4979.
  • Humphreys, G. W. (1981). On varying the span of visual attention: Evidence for two modes of spatial attention. Quarterly Journal of Experimental Psychology, 33A, 1731.
  • Ivry, R. B., & Robertson, L. C. (1998). The two sides of perception. Cambridge, MA: The MIT Press.
  • Jacobs, R. A., & Kosslyn, S. M. (1994). Encoding shape and spatial relations: The role of receptive field size in coordinating complementary representations. Cognitive Science, 18, 361386.
  • Jager, G., & Postma, A. (2003). On the hemispheric specialization for categorical and coordinate spatial relations: A review of the current evidence. Neuropsychologia, 41, 504515.
  • Jonides, J. (1981). Voluntary vs. automatic control over the mind’s eye’s movement. In J. B.Long & A. D.Baddeley (Eds.), Attention and performance IX (pp. 187204). Hillsdale, NJ: Erlbaum.
  • Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751761.
  • Kemmerer, D. (2006). The semantics of space: Integrating linguistic typology and cognitive neuroscience. Neuropsychologia, 44, 16071621.
  • Kitterle, F. L., Hellige, J. B., & Christman, S. (1992). Visual hemispheric asymmetries depend on which spatial frequencies are task relevant. Brain and Cognition, 20, 308314.
  • Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: A computational approach. Psychological Review, 94, 148175.
  • Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA: The MIT Press.
  • Kosslyn, S. M. (2006). You can play 20 questions with nature and win: Categorical versus coordinate spatial relations as a case study. Neuropsychologia, 44, 15191523.
  • Kosslyn, S. M., Chabris, C. F., Marsolek, C. J., & Koenig, O. (1992). Categorical versus coordinate spatial relations: Computational analyses and computer simulations. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 562577.
  • Kosslyn, S. M., & Jacobs, R. A. (1994). Encoding shape and spatial relations: A simple mechanism for coordinating complementary representations. In V.Honavar & L. M.Uhr (Eds.), Artificial intelligence and neural networks: Steps toward principled integration (pp. 373385). Boston: Academic Press.
  • Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. E. (1989). Evidence for two types of spatial representations: Hemispheric specialization for categorical and coordinate relations. Journal of Experimental Psychology: Human Perception and Performance, 15, 723735.
  • Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35, 18971916.
  • Kramer, A. E., & Hahn, S. (1995). Splitting the beam: Distribution of attention over noncontiguous regions of the visual field. Psychological Science, 6, 381386.
    Direct Link:
  • LaBerge, D., & Brown, V. (1989). Theory of attentional operations in shape identification. Psychological Review, 96, 101124.
  • Laeng, B. (1994). Lateralization of categorical and coordinate spatial functions: A study of unilateral stroke patients. Journal of Cognitive Neuroscience, 6, 189203.
  • Laeng, B. (2006). Constructional apraxia after left or right unilateral stroke. Neuropsychologia, 44, 15951606.
  • Laeng, B., Carlesimo, G. A., Caltagirone, C., Capasso, R., & Miceli, G. (2002). Rigid and nonrigid objects in canonical and noncanonical views: Hemisphere-specific effects on object identification. Cognitive Neuropsychology, 19, 697720.
  • Laeng, B., Chabris, C. F., & Kosslyn, S. M. (2003). Asymmetries in encoding spatial relations. In R.Davidson & K.Hugdahl (Eds.), The asymmetrical brain (pp. 303339). Cambridge, MA: The MIT Press.
  • Laeng, B., Kosslyn, S. M., Caviness, V. S., & Bates, J. (1999a). Can deficits in spatial indexing contribute to simultanagnosia? Cognitive Neuropsychology, 16, 81114.
  • Laeng, B., & Peters, M. (1995). Cerebral lateralization for the processing of spatial coordinates and categories in left- and right-handers. Neuropsychologia, 33, 421439.
  • Laeng, B., Shah, J., & Kosslyn, S. M. (1999b). Identifying objects in conventional and contorted poses: Contributions of hemisphere-specific mechanisms. Cognition, 70, 5385.
  • Lee, D. K., Itti, L., Koch, C., & Braun, J. (1999). Attention activates winner-take-all competition among visual filters. Nature Neuroscience, 2, 375381.
  • Levinson, S., Meira, S., & The Language and Cognition Group (2003). ‘Natural concepts’ in the spatial topological domain—adpositional meanings in crosslinguistics perspective: An exercise in semantic typology. Language, 79, 485516.
  • Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject design. Psychonomic Bulletin and Review, 1, 476490.
  • Logan, G. D. (1994). Spatial attention and the apprehension of spatial relations. Journal of Experimental Psychology: Human Perception and Performance, 20, 10151036.
  • Logan, G. D. (1995). Linguistic and conceptual control of visual spatial attention. Cognitive Psychology, 28, 103174.
  • Logan, G. D., & Compton, B. J. (1996). Distance and distraction effects in the apprehension of spatial relations. Journal of Experimental Psychology: Human Perception and Performance, 22, 159172.
  • van der Lubbe, I. J. M., Scholvinck, M. L., Kenemans, J. L., & Postma, A. (2006). Divergence of categorical and coordinate spatial processing with ERPs. Neuropsychologia, 44, 15471559.
  • Maringelli, F., & Umiltà, C. (1998). The control of the attentional focus. European Journal of Cognitive Psychology, 10, 225246.
  • Martin, R., Houssemand, C., Schiltz, C., Burnod, Y., & Alexandre, F. (2008). Is there continuity between categorical and coordinate spatial relations coding? Evidence from a grid/no-grid working memory paradigm. Neuropsychologia, 46, 576594.
  • McMains, S. A., & Somers, D. C. (2004). Multiple spotlights of attentional selection in human visual cortex. Neuron, 42, 677686.
  • Miller, G. A., & Johnson-Laird, P. N. (1976). Language and perception. Cambridge, MA: Harvard University Press.
  • Mitroff, S. R., Scholl, B. J., & Wynn, K. (2004). Divide and conquer: How object files adapt when a persisting object splits into two. Psychological Science, 15, 420425.
    Direct Link:
  • Monaghan, P., & Pollmann, S. (2003). Division of labor between the hemispheres for complex but not simple tasks: An implemented connectionist model. Journal of Experimental Psychology. General, 132, 379399.
  • Motter, B., & Belky, E. J. (1998). The zone of focal attention during active visual search. Vision Research, 38, 10071022.
  • Motter, B. C., & Mountcastle, V. B. (1981). The functional properties of light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience, 1, 326.
  • Motter, B. C., Steinmetz, M. A., Duffy, C. J., & Mountcastle, V. B. (1987). Functional properties of parietal visual neurons: Mechanisms of directionality along a single axis. Journal of Neuroscience, 7, 154176.
  • Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315330.
  • Müller, M. M., & Hübner, R. (2002). Can the spotlight of attention be shaped like a doughnut? Evidence from steady-state visual evoked potentials. Psychological Science, 13, 119124.
    Direct Link:
  • Müller, N. G., Bartelt, O. A., Donner, T. H., Villringer, A., & Brandt, S. A. (2003). A physiological correlate of the “zoom lens” of visual attention. Journal of Neuroscience, 23, 35613565.
  • Nakayama, K., He, Z. J., & Shimojo, S. (1995). Visual surface representation: A critical link between lower-level and higher-level vision. In S. M.Kosslyn & D. N.Osherson (Eds.), Vision: An invitation to cognitive science (pp. 170). Cambridge, MA: The MIT Press.
  • Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29(11), 16311647.
  • O’Keefe, J. (2003). Vector grammar, places, and the functional role of spatial prepositions in English. In E.van der Zee & J.Slack (Eds.), Representing direction in language and space (pp. 6985). Oxford, England: Oxford University Press.
  • Okubo, M., Laeng, B., Saneyoshi, A., & Michimata, C. (in press). Exogenous attention differentially modulates the processing of categorical and coordinate spatial relations. Acta Psychologica, 135, 111.
  • O’Reilly, R. C., Kosslyn, S. M., Marsolek, C. J., & Chabris, C. F. (1990). Receptive field characteristics that allow parietal lobe neurons to encode spatial properties of visual input: A computational analysis. Journal of Cognitive Neuroscience, 2, 141155.
  • Palermo, L., Bureca, I., Matano, A., & Guariglia, C. (2008). Hemispheric contribution to categorical and coordinate representational processes: A study on brain-damaged patients. Neuropsychologia, 46, 28022807.
  • Pinker, S. (2007). The stuff of thought: Language as a window into human nature. New York: Penguin Books.
  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 325.
  • Posner, M. I., & Gilbert, C. D. (1999). Attention and primary visual cortex. Proceedings of the National Academy of Sciences, USA, 96, 25852587.
  • Postma, A., & Laeng, B. (2006). New insights in categorical and coordinate processing of spatial relations. Neuropsychologia, 44, 15151518.
  • Prinzmetal, W. (2005). Location perception: The X-Files parable. Perception & Psychophysics, 67, 4871.
  • Rafal, R. (2001). Bálint’s syndrome. In M.Behrmann (Ed.). Handbook of neuropsychology (Vol. 4, pp. 121141). Amsterdam: Elsevier Science.
  • Reese, C. J., & Stiles, J. (2005). Hemispheric specialization for categorical and coordinate spatial relations during an image generation task: Evidence from children and adults. Neuropsychologia, 43, 517529.
  • Regier, T., & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation. Journal of Experimental Psychology: General, 130, 273298.
  • Ress, D., Backus, B. T., & Heeger, D. J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3, 940945.
  • Reynolds, J. H., Alborzian, S., & Stoner, G. R. (2003). Exogenously cued attention triggers competitive selection of surfaces. Vision Research, 43, 5966.
  • Rizzo, M., & Vecera, S. P. (2002). Psychoanatomical substrates of Bálint’s syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 162178.
  • Robertson, L. C., & Kim, M.-S. (1999). Effects of perceived space on spatial attention. Psychological Science, 10, 7679.
    Direct Link:
  • Rueckl, J. G., Cave, K. R., & Kosslyn, S. M. (1989). Why are “what” and “where” processed by separate cortical visual systems? A computational investigation. Journal of Cognitive Neuroscience, 1, 171186.
  • Saneyoshi, A., Kaminaga, T., & Michimata, C. (2006). Hemispheric processing of categorical/metric properties in object recognition. NeuroReport, 17, 517521.
  • Sasaki, Y., Hadjikhani, N., Fischl, B., Liu, A. K., Marrett, S., Dale, A. M., & Tootell, R. B. H. (2001). Local and global attention are mapped retinotopically in human occipital cortex. Proceedings of the National Academy of Sciences USA, 98, 20772082.
  • Shaw, M. L. (1978). A capacity allocation model for reaction time. Journal of Experimental Psychology: Human Perception and Performance, 4, 568598.
  • Shaw, M. L., & Shaw, P. (1977). Optimal allocation of cognitive resources to spatial locations. Journal of Experimental Psychology: Human Perception and Performance, 3, 201211.
  • Shulman, G. L., Remington, R. W., & McLean, J. P. (1979). Moving attention through visual space. Journal of Experimental Psychology: Human Perception and Performance, 5, 522526.
  • Slobin, D. I. (1996). From “thought and language” to “thinking for speaking”. In J. J.Gumperz & S. C.Levinson (Eds.), Rethinking linguistic relativity (pp. 7096). Cambridge, England: Cambridge University Press.
  • Somers, D. C., Dale, A. M., Seiffert, A. E., & Tootell, R. B. H. (1999). Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proceedings of the National Academy of Sciences, USA, 96, 16631668.
  • Stoffer, T. H. (1993). The time course of attentional zooming: A comparison of voluntary and involuntary allocation of attention to the levels of compound stimuli. Psychological Research, 56, 1425.
  • Talmy, L. (1983). How language structures space. In H. L.Pick & L. P.Acredolo (Eds), Spatial orientation: Theory, research, and application (pp. 225282). New York: Plenum Press.
  • Talmy, L. (2000). Toward a cognitive semantics. Volume I: Concept structuring systems. Cambridge, MA: The MIT Press.
  • Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 16321634.
  • Theeuwes, J. (1994). Exogenous and endogenous control of visual attention. Perception, 23, 429440.
  • Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6, 171178.
  • Treisman, A. (2006). How the deployment of attention determines what we see. Visual Cognition, 14, 411443.
  • Tsal, Y., & Bareket, T. (2005). Localization judgments under various levels of attention. Psychonomic Bulletin & Review, 12(3), 559566.
  • Tsal, Y., Meiran, N., & Lamy, D. (1995). Toward a resolution theory of visual attention. Visual Cognition, 2, 313330.
  • Turatto, M., Benso, F., Facoetti, A., Galfano, G., Mascetti, G. G., & Umiltà, C. (2000). Automatic and voluntary focusing of attention. Perception & Psychophysics, 62, 935952.
  • Ullman, S. (1984). Visual routines. Cognition, 18, 97159.
  • Underwood, G., Crundall, D., & Hodson, K. (2005). Confirming statements about pictures of natural scenes: Evidence of the processing of gist from eye movements. Perception, 34, 10691082.
  • Ungerleider, L. G., & Mishkin, M. (1982). Two visual pathways. In D. J.Ingle, M. A.Goodale, & R. J. W.Mansfield (Eds.), Analysis of visual behavior (pp. 549586). Cambridge, MA: The MIT Press.
  • Ward, L. M. (1982). Determinants of attention to local and global features of visual forms. Journal of Experimental Psychology: Human Perception and Performance, 8, 562581.
  • Yamaguchi, S., Yamagata, S., & Kobayashi, S. (2000). Cerebral asymmetry of the “top-down” allocation of attention to global and local features. Journal of Neuroscience, 20, 15.
  • Yantis, S. (1996). Attentional capture in vision. In A. F.Kramer, M. G. H.Coles, & G. D.Logan (Eds.), Converging operations in the study of visual selective attention (pp. 4576). Washington, DC: American Psychological Association.
  • Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equilibrium visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20, 95107.
  • Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601621.
  • Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396, 7275.
  • Yeshurun, Y., & Carrasco, M. (2000). The locus of attentional effects in texture segmentation. Nature Neuroscience, 3(6), 622627.
  • Yeshurun, Y., & Carrasco, M. (2008). The effects of transient attention on spatial resolution and the size of the attentional cue. Perception & Psychophysics, 70(1), 104113.
  • Young, A. (1982). Methodological and theoretical bases of visual hemifield studies. In G. J.Beaumont (Ed.), Divided visual field studies of cerebral organization (pp. 1127). London: Academic Press.
  • Yuille, A. L., & Grzywacz, N. M. (1989). A winner-take-all mechanism based on presynaptic inhibition feedback. Neural Computation, 1, 334347.