SEARCH

SEARCH BY CITATION

References

  • Arnold, V. I., Afrajmovich, V. F., Ilyashenko, Y. S., & Shilnikov, L. P. (1999). Bifurcation theory and catastrophe theory (Encyclopaedia of mathematical sciences). New York: Springer.
  • Böckenholt, U. (2005). A latent Markov model for the analysis of longitudinal data collected in continuous time: States, durations, and transitions. Psychological Methods, 10, 6583.
  • Bogacz, R. (2007). Optimal decision-making theories: Linking neurobiology with behaviour. Trends in Cognitive Sciences, 11, 118125.
  • Bogacz, R., Wagenmakers, E.-J., Forstmann, B. U., & Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33, 1016.
  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.
  • Brown, S. D., & Heathcote, A. (2005). A ballistic model of choice response time. Psychological Review, 112, 117128.
  • Brown, S. D., & Heathcote, A. J. (2008). The simplest complete model of choice reaction time: Linear ballistic accumulation. Cognitive Psychology, 57, 153178.
  • Castrigiano, D. P. L., & Hayes, S. A. (1993). Catastrofe theory. Reading, MA: Addison-Wesley Publishing Co.
  • Cobb, L., & Watson, B. (1981). Statistical catastrophe theory: An overview. Mathematical Modelling, 1, 311317.
  • Dolan, C. V., Van der Maas, H. L. J., & Molenaar, P. C. M. (2002). A framework for ML estimation of parameters of (mixtures of) common reaction time distributions given optional truncation or censoring. Behavior Research Methods, Instruments & Computers, 34, 304323.
  • Dosher, B. (1979). Empirical approaches to information processing: Speed-accuracy tradeoff functions or reaction time—A reply. Acta Psychologica, 43, 347359.
  • Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.-J. (2009). A diffusion model decomposition of the practice effect. Psychonomic Bulletin & Review, 16, 10261036.
  • Fisher, N. I., & Marron, J. S. (2001). Mode testing via the excess mass estimate. Biometrika, 88, 499517.
  • Forstmann, B. U., Dutilh, G., Brown, S. D., Neumann, J., Cramon, D. Y. von Ridderinkhof, K. R., et al. (2008). Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences, 105, 17538.
  • Gilmore, R. (1981). Catastrophe theory for scientists and engineers. New York: Wiley.
  • Grasman, R. P. P. P., van der Maas, H. L. J., & Wagenmakers, E.-J. (2009). Fitting the cusp catastrophe in R: A cusp package primer. Journal of Statistical Software, 32(8), 127.
  • Hartelman, P. A. I., van der Maas, H. L. J., & Molenaar, P. C. M. (1998). Detecting and modeling developmental transitions. British Journal of Developmental Psychology, 16, 97122.
  • Heath, R. A. (2000). The orstein-uhlenbeck model of decision time in cognitive tasks: An example of control of nonlinear network dynamics. Psychological Research, 63, 183191.
  • Henmon, V. (1911). The relation of the time of a judgment to its accuracy. Psychological Review, 18, 186201.
  • Hock, H. S., Kelso, J. A. S., & Schöner, G. (1993). Bistability, hysteresis and loss of temporal stability in the perceptual organization of apparent motion. Journal of Experimental Psychology: Human Perception and Performance, 19, 6380.
  • Jansen, B., & Van der Maas, H. L. J. (2001). Evidence for the phase transition from rule I to rule II on the balance scale task. Developmental Review, 21, 450494.
  • Lappin, J. S., & Disch, K. (1972). The latency operating characteristic. I. Effects of stimulus probability on choice reaction time. Journal of Experimental Psychology, 92, 419.
  • Latané, B., & Nowak, A. (1994). Attitudes as catastrophes: From dimensions to categories with increasing involvement. In R.Vallacher, & A.Nowak (Eds.), Dynamical systems in social psychology (pp. 219249). New York: Academic Press.
  • Link, S. W. (1982). Correcting response measures for guessing and partial information. Psychological Bulletin, 92, 469486.
  • Luce, R. D. (1986). Response times. New York: Oxford University Press.
  • Meyer, D., Irwin, D., Osman, A., & Kounios, J. (1988). The dynamics of cognition and action: Mental processes inferred from speed-accuracy decomposition. Psychological Review, 95, 183237.
  • Newell, B. R., & Lee, M. D. (2010). The right tool for the job? Comparing an evidence accumulation and a naive strategy selection model of decision making. Journal of Behavioral Decision Making, DOI: 10.1002/bdm.703.
  • Newell, K. M., Liu, Y. T., & Mayer-Kress, G. (2000). Time scales in motor learning and development. Psychological review, 108, 5782.
  • Ollman, R. T. (1966). Fast guesses in choice reaction time. Psychonomic Science, 6, 155156.
  • Ollman, R. T. (1970). A study of the fast guess model for choice reaction times. Unpublished doctoral dissertation, University of Pennsylvania.
  • Pachella, R., & Pew, R. (1968). Speed-accuracy tradeoff in reaction time: Effect of discrete criterion times. Journal of Experimental Psychology, 76, 1924.
  • Ploeger, A., Van der Maas, H. L. J., & Hartelman, P. A. I. (2002). Stochastic catastrophe analysis of switches in the perception of apparent motion. Psychonomic Bulletin & Review, 9, 26.
  • Poston, T., & Stewart, I. (1978a). Catastrophe theory and its applications. London: Pitman.
  • Poston, T., & Stewart, I. (1978b). Nonlinear modeling of multistable perception. Behavioral Science, 23, 318334.
  • Rabbitt, P. (1979). How old and young subjects monitor and control responses for accuracy and speed. British Journal of Psychology, 70, 305311.
  • Raftery, A. E. (1999). Bayes factors and BIC. Sociological Methods & Research, 27, 411417.
  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59108.
  • Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86, 446461.
  • Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive Psychology, 53, 195237.
  • Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873922.
  • Ratcliff, R., & Rouder, J. (1998). Modeling response times for two-choice decisions. Psychological Science, 9, 347356.
    Direct Link:
  • Rieskamp, J., & Otto, P. E. (2006). SSL: a theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135, 207235.
  • Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multialternative decision field theory: A dynamic connectionist model of decision making. Psychological Review, 108, 370392.
  • Schöner, G., Haken, H., & Kelso, J. (1986). A stochastic theory of phase transitions in human hand movement. Biological Cybernetics, 53, 247257.
  • Schouten, J. F., & Bekker, J. A. M. (1967). Reaction time and accuracy. Acta Psychologica, 27, 143153.
  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.
  • Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society. Series B (Methodological), 43, 9799.
  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall/CRC.
  • Simen, P., Cohen, J. D., & Holmes, P. (2006). Rapid decision threshold modulation by reward rate in a neural network. Neural Networks, 19, 10131026.
  • Smith, P. L. (1995). Psychophysically principled models of visual simple reaction time. Psychological Review, 102, 567593.
  • Smith, P. L., & Van Zandt, T. (2000). Time-dependent poisson counter models of response latency in simple judgment. British Journal of Mathematical and Statistical Psychology, 53, 293315.
  • Stewart, I. N., & Peregoy, P. L. (1983). Catastrophe theory modeling in psychology. Psychological Bulletin, 94, 336362.
  • Sussmann, H. J., & Zahler, R. S. (1978). Catastrophe theory as applied to the social and biological sciences: A critique. Synthese, 37, 117216.
  • Swensson, R. G. (1972). The elusive tradeoff: Speed vs. accuracy in visual discrimination tasks. Perception & Psychophysics, 12, 1632.
  • Swensson, R. G., & Center, M. U. A. A. H. P. (1968). The elusive tradeoff: Speed versus accuracy in choice reaction tasks with continuous cost for time. Technical Report 13. Ann Arbor, MI: Human Performance Center, Department of Psychology, University of Michigan.
  • Swensson, R. G., & Edwards, W. (1971). Response strategies in a two-choice reaction task with a continuous cost for time. Journal of Experimental Psychology, 88, 6781.
  • Tamaki, T., Torii, T., & Maeda, K. (2003). Stability analysis of black holes via a catastrophe theory and black hole thermodynamics in generalized theories of gravity. Physical Review D, 68(2), 024028.
  • Thom, R. (1975). Structural stability and morphogenesis: An outline of a general theory of models. Reading, MA: Benjamin.
  • Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes. Cambridge, England: Cambridge University Press.
  • Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Pshychological Review, 108, 550592.
  • Van der Maas, H. L. J., & Molenaar, P. C. M. (1992). Stagewise cognitive development: An application of catastrophe theory. Psychological Review, 99, 395417.
  • Verhelst, N., Verstralen, H., & Jansen, M. (1997). A logistic model for time-limit tests. In W. J.van der Linden, & R. K.Hambleton (Eds.), Handbook of modern item response theory (pp. 169186). New York: Springer.
  • Vermunt, J. K., Langeheine, R., & Böckenholt, U. (1999). Discrete-time discrete-state latent Markov modles with time-constant and time-varying covariates. Journal of Educational and Behavioral Statistics, 24, 179207.
  • Vickers, D. (1979). Decision processes in visual perception. London: Academic Press.
  • Vickers, D., & Lee, M. D. (1998). Dynamic models of simple judgments: I. Properties of a self-regulating accumulator module. Nonlinear Dynamics, Psychology, and Life Sciences, 2, 169194.
  • Vickers, D., & Lee, M. D. (2000). Dynamic models of simple judgments: II. Properties of a self-organizing PAGAN (parallel, adaptive, generalized accumulator network) model for multi-choice tasks. Nonlinear Dynamics, Psychology, and Life Sciences, 4, 131.
  • Visser, I. (2007). depmix: An R-package for fitting mixture models on mixed multivariate data with Markov dependencies. R-package manual. Available at: http://cran.r-project.org. Accessed on January 21, 2010.
  • Visser, I., Raijmakers, M. E. J., & Van der Maas, H. L. J. (2009). Hidden Markov models for individual time series. In J.Valsiner, P. C. M.Molenaar, M. C. D. P.Lyra, & N.Chaudhary (Eds.), Dynamic process methodology in the social and developmental sciences (pp. 269289). New York: Springer.
  • Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy. European Journal of Cognitive Psychology, 21, 641671.
  • Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11, 192196.
  • Wagenmakers, E.-J., Van der Maas, H. L. J., & Molenaar, P. C. M.(2005). Catastrophe theory. In B. S.Everitt & D. C.Howell (Eds.), Encyclopedia of statistics in behavioral science (pp. 234239). Chichester: Wiley.
  • Wales, D. J. (2001). A microscopic basis for the global appearance of energy landscapes. Science, 293, 20672070.
  • Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41, 6785.
  • Wickens, T. D. (1982). Models for behavior: Stochastic processes in psychology. San Francisco: WH Freeman & Co Ltd.
  • Yantis, S., Meyer, D. E., & Smith, J. E. K. (1991). Analyses of multinomial mixture distributions: New tests for stochastic models of cognition and action. Psychological Bulletin, 110, 350374.
  • Yellott, J. I. (1971). Correction for fast guessing and the speed-accuracy tradeoff in choice reaction time. Journal of Mathematical Psychology, 8, 159199.
  • Zeeman, E. C. (1976). Catastrophe theory. Scientific American, 234, 6583.