SEARCH

SEARCH BY CITATION

References

  • Abdelbar, A. M., & Hedetniemi, S. M. (1998). Approximating MAPs for belief networks is NP-hard and other theorems. Artificial Intelligence, 10, 221238.
  • Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as inverse planning. Cognition, 113, 329349.
  • Blokpoel, M., Kwisthout, J., der Weide, T., & van Rooij, I. (2010). How action understanding can be rational, Bayesian, and tractable. Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 5055. Austin, TX: Cognitive Science Society.
  • Bodlaender, H. L. (1997). Treewidth: Algorithmic techniques and results. Proceedings of the 22nd International Symposium on Mathematical Foundations of Computer Science, pp. 1936. Berlin: Springer-Verlag.
  • Chater, N., & Manning, C. (2006). Probabilistic models of language processing and acquisition. Trends in Cognitive Sciences, 107, 335344.
  • Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition: Conceptual foundations. Trends in Cognitive Sciences, 107, 287201.
  • Chickering, D. M. (1996). Learning Bayesian networks is NP-complete. In D.Fisher & H.-J.Lenz (Eds.), Learning from data: AI and statistics V (pp. 121130). Heidelberg: Springer-Verlag.
  • Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 160, 141153.
  • Downey, R., & Fellows, M. (1999). Parameterized complexity. Berlin: Springer-Verlag.
  • Fortnow, L. (2009). The status of the P versus NP problem. Communications of the ACM, 52, 978986.
  • Frank, M. C., Goodman, N. D., & Tenenbaum, J. B. (2009). Using speakers’ referential intentions to model early cross-situational word learning. Psychological Science, 20, 578585.
    Direct Link:
  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco, CA: W.H. Freeman.
  • Gigerenzer, G. (2008). Why heuristics work. Perspectives in Psychological Science, 31, 2029.
    Direct Link:
  • Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart. Oxford, England: Oxford University Press.
  • Gigerenzer, G., Hoffrage, U., & Goldstein, D. G. (2008). Fast and frugal heuristics are plausible models of cognition: Reply to Dougherty, Franco-Watkins, and Thomas (2008). Psychological Review, 115, 1230239.
  • Griffiths, T. L., Sanborn, A. N., Canini, K. R., & Navarro, D. J. (2008). Categorization as nonparametric Bayesian density estimation. In M.Oaksford & N.Chater (Eds.), The probabilistic mind: Prospects for rational models of cognition (pp. 303350). Oxford, England: Oxford University Press.
  • Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences, 10531, 1068710692.
  • Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 42, 7244247.
  • Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 107, 319326.
  • Kwisthout, J. H. P. (2009). The computational complexity of probabilistic networks. Unpublished doctoral dissertation, Faculty of Science, Utrecht University, The Netherlands.
  • Kwisthout, J. H. P. (in press). Most probable explanations in Bayesian networks: Complexity and algorithms. International Journal of Approximate Reasoning.
  • Littman, M. L., Goldsmith, J., & Mundhenk, M. (1998). The computational complexity of probabilistic planning. Journal of Artificial Intelligence Research, 9, 9136.
  • Nilsson, D. (1998). An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. Statistics and Computing, 8, 159173.
  • Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117(4), 11441167.
  • Schachter, R. (1986). Evaluating influence diagrams. Operations Research, 34, 871882.
  • Schachter, R. (1988). Probabilistic inference and influence diagrams. Operations Research, 36, 589604.
  • Shimony, S. E. (1994). Finding MAPs for belief networks is NP-hard. Artificial Intelligence, 682, 399410.
  • Sloman, S. A., & Hagmayer, Y. (2006). The causal psycho-logic of choice. Trends in Cognitive Sciences, 10, 407412.
  • van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32, 939984.
  • van Rooij, I., & Wareham, T. (2008). Parameterized complexity in cognitive modeling: Foundations, applications and opportunities. Computer Journal, 513, 385404.
  • van Rooij, I., Evans, P., Müller, M., Gedge, J., & Wareham, T. (2008). Identifying sources of intractability in cognitive models: An illustration using analogical structure mapping. Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 915920). Austin, TX: Cognitive Science Society.
  • Vul, E., Goodman, N. D., Griffiths, T. L., & Tenenbaum, J. B. (2009). One and done? Optimal decisions from very few samples. 31st Annual Meeting of the Cognitive Science Society (pp. 148153). Austin, TX: Cognitive Science Society.
  • Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: Analysis by synthesis? Trends in Cognitive Sciences, 107, 301308.