• Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700765.
  • Bonnet, C., Zamora, M. C., Buratti, F., & Guirao, M. (1999). Group and individual gustatory reaction times and Piéron's law. Physiology & Behavior, 66(4), 549558.
  • Carpenter, R. H. S. (1981). Oculomotor procrastination. In D. Fisher, R. A. Monty, & J. W. Senders (Eds.), Eye movements: Cognition and visual perception (pp. 237246). Hillsdale, NJ: Lawrence Erlbaum.
  • Carpenter, R. H. S. (2004). Contrast, probability, and saccadic latency: Evidence for independence of detection and decision. Current Biology, 14(17), 15761580.
  • Clauset, A., Shalizi, C., & Newman, M. (2009). Power-law distributions in empirical data. SIAM review, 51(4), 661703.
  • Dayan, P., & Abbott, L. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press.
  • Donders, F. (18681869/1969). Over de snelheid van psychische processen. onderzoekingen gedann in het physiologish laboratorium der utrechtsche hoogeshool. In W. G. Koster (Ed.), Attention and performance (vol. II Amsterdam: North-Holland.
  • Gigerenzer, G., & Todd, P. (1999). Simple heuristics that make us smart. New York: Oxford University Press.
  • Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Sciences, 5(1), 1016.
  • Gold, J. I., & Shadlen, M. N. (2002). Banburismus and the brain: Decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36(2), 299308.
  • Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535.
  • Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge, UK: Cambridge University Press.
  • Luce, R. (1986). Response times: Their role in inferring elementary mental organisation. New York: Clarendon Press.
  • MacLeod, C. (1998). Training on integrated versus separated stroop tasks: The progression of interference and facilitation. Memory & Cognition, 26(2), 201211.
  • MacLeod, C., & MacDonald, P. (2000). Interdimensional interference in the stroop effect: Uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 4(10), 383391.
  • Opris, I., & Bruce, C. J. (2005). Neural circuitry of judgment and decision mechanisms. Brain Research: Brain Research Reviews, 48(3), 509526.
  • Palmer, J., Huk, A., & Shadlen, M. (2005). The effect of stimulus strength on the speed and accuracy of a perceptual decision. Journal of Vision, 5(5), 376404.
  • Piéron, H. (1952). The sensations: Their functions, processes and mechanisms. London: Frederick Muller Ltd.
  • Pins, D., & Bonnet, C. (1996). On the relation between stimulus intensity and processing time: Piéron's law and choice reaction time. Perception & Psychophysics, 58(3), 390400.
  • Platt, M. (2002). Neural correlates of decisions. Current Opinion in Neurobiology, 12(2), 141148.
  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59108.
  • Ratcliff, R. (2001). Putting noise into neurophysiological models of simple decision making. Nature Neuroscience, 4(4), 336.
  • Ratcliff, R., Cherian, A., & Segraves, M. (2003). A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. Journal Of Neurophysiology, 90(3), 13921407.
  • Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873922.
  • Ratcliff, R., & Rouder, J. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347356.
    Direct Link:
  • Reddi, B., Asrress, K., & Carpenter, R. (2003). Accuracy, information, and response time in a saccadic decision task. Journal of Neurophysiology, 90(5), 35383546.
  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89(4), 10091023.
  • Stafford, T., & Gurney, K. (2004). The role of response mechanisms in determining reaction time performance: Piéron's law revisited. Psychonomic Bulletin & Review, 11(6), 975987.
  • Stafford, T., & Gurney, K. (2007). Biologically constrained action selection improves cognitive control in a model of the Stroop task. Philosophical Transactions of the Royal Society London, Series B, 362, 16711684.
  • Sternberg, S. (1998). Discovering mental processing stages: The method of additive factors. In D. Scarborough & S. Sternberg (Eds.), An invitation to cognitive science: Methods, models, and conceptual issues (2nd ed., pp. 702863). Cambridge, MA: MIT Press.
  • Stroop, J. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.
  • Thomas, R. D. (2006). Processing time predictions of current models of perception in the classic additive factors paradigm. Journal of Mathematical Psychology, 50(5), 441455.
  • Townsend, J. T., & Wenger, M. J. (2004). The serial-parallel dilemma: A case study in a linkage of theory and method. Psychonomic Bulletin & Review, 11(3), 391418.
  • Woodman, G., Kang, M., Thompson, K., & Schall, J. (2008). The effect of visual search efficiency on response preparation. Psychological science, 19(2), 128.
    Direct Link: