SEARCH

SEARCH BY CITATION

Keywords:

  • Causation;
  • Causal reasoning;
  • Counterfactual reasoning;
  • Development

Abstract

The application of the formal framework of causal Bayesian Networks to children’s causal learning provides the motivation to examine the link between judgments about the causal structure of a system, and the ability to make inferences about interventions on components of the system. Three experiments examined whether children are able to make correct inferences about interventions on different causal structures. The first two experiments examined whether children’s causal structure and intervention judgments were consistent with one another. In Experiment 1, children aged between 4 and 8 years made causal structure judgments on a three-component causal system followed by counterfactual intervention judgments. In Experiment 2, children’s causal structure judgments were followed by intervention judgments phrased as future hypotheticals. In Experiment 3, we explicitly told children what the correct causal structure was and asked them to make intervention judgments. The results of the three experiments suggest that the representations that support causal structure judgments do not easily support simple judgments about interventions in children. We discuss our findings in light of strong interventionist claims that the two types of judgments should be closely linked.