SEARCH

SEARCH BY CITATION

References

  • Aharonov, R., Segev, L., Meilijson, I., & Ruppin, E. (2003). Localization of function via lesion analysis. Neural Computation, 15(4), 885913.
  • Ballard, D. (1991). Animate vision. Artificial Intelligence, 48(1), 127.
  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577609.
  • Bechtel, W. (1998). Representations and cognitive explanations: Assessing the dynamicist challenge in cognitive science. Cognitive Science, 22(3), 295318.
  • Bechtel, W., Abrahamsen, A., & Graham, G. (1998). The life of cognitive science. In W. Bechtel & G. Graham (Eds.), A companion to cognitive science (pp. 1104). Malden, MA: Blackwell.
  • Bedau, M. (2002). The scientific and philosophical scope of artificial life. Leonardo, 35(4), 395400.
  • Beer, R. D. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72(1–2), 173215.
  • Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (pp. 421429). Cambridge, MA: MIT Press.
  • Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 9199.
  • Beer, R. D. (2003a). Arches and stones in cognitive architecture: Reply to comments. Adaptive Behavior, 11, 2993055.
  • Beer, R. D. (2003b). The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior, 11(4), 209243.
  • Bickhard, M. H. (1999). Interaction and representation. Theory and Psychology, 9(4), 435458.
  • Brooks, R. A. (1990). Elephants don't play chess. Robotics and Autonomous Systems, 6, 315.
  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence Journal, 47, 139159.
  • Caligiore, D., Borghi, A., Parisi, D., & Baldassarre, G. (2010). Tropicals: A computational embodied neuroscience model of compatibility effects. Psychological Review, 117, 11881228.
  • Cangelosi, A., & Harnad, S. (2000). The adaptive advantage of symbolic theft over sensorimotor toil: Grounding language in perceptual categories. Evolution of Communication, 4, 117142.
  • Chemero, A. (2001). Dynamical explanation and mental representations. Trends in Cognitive Sciences, 5(4), 141142.
  • Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.
  • Churchland, P., Ramachandran, V., & Sejnowski, T. (1994). A critique of pure vision. In C. Koch & J. L. Davis (Eds.), Large scale neuronal theories of the brain (pp. 2360). Cambridge, MA: MIT Press.
  • Clark, A. (1997a). Being there: putting brain, body and world together again. Oxford, England: Oxford University Press.
  • Clark, A. (1997b). The dynamical challenge. Cognitive Science, 21(4), 461481.
  • Clark, A. (2003). Forces, fields, and the role of knowledge in action. Adaptive Behavior, 11, 270272.
  • Clark, A. (2006). Language, embodiment, and the cognitive niche. Trends in Cognitive Sciences, 10(8), 370374.
  • Clark, A., & Grush, R. (1999). Towards a cognitive robotics. Adaptive Behavior, 7(1), 516.
  • Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101, 401431.
  • Cliff, D., & Noble, J. (1997). Knowledge-based vision and simple visual machines. Philosophical Transactions to the Royal Society of London B, 352, 11651175.
  • Clowes, R., & Morse, A. F. (2005). Scaffolding cognition with words. In L. Berthouze, F. Kaplan, H. Kozima, H. Yano, J. Konczak, G. Metta, J. Nadel, G. Sandini, G. Stojanov, & C. Balkenius (Eds.), Proceedings of the Fifth International Workshop on Epigenetic Robotics:Modeling Cognitive Development in Robotic Systems (pp. 101105). Lund, Sweden: Lund University Cognitive Studies.
  • Cummins, R. (1989). Meaning and mental representation. Cambridge, MA: MIT Press.
  • Dennett, D. C. (1978). Brainstorms. Cambridge, MA: MIT Press.
  • Dennett, D. C. (1991). Consciousness explained. New York: Little Brown & Co.
  • Dennett, D. C. (1993). Learning and labeling. Mind and language, 8(4), 540547.
  • Dennett, D. C. (1994). Artificial life as philosophy. Artificial Life, 1(1), 291292.
  • Dietrich, E. & Markman, A. (2003). Discrete thoughts: Why cognition must use discrete representations. Mind and Language, 18, 95119.
  • Dretske, F. (1988). Explaining behavior. Cambridge, MA: MIT Press.
  • Dreyfus, H. L. (2002). Intelligence without representation merleau-ponty's critique of mental representation the relevance of phenomenology to scientific explanation. Phenomenology and the Cognitive Sciences, 1(4), 367383.
  • Edelman, S. (2003). But will it scale up? not without representations. Adaptive Behavior, 11, 273275.
  • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179211.
  • Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The psychology of looking and seeing. Oxford, England: Oxford University Press.
  • Floreano, D., Kato, T., Marocco, D., & Sauser, E. (2004). Coevolution of active vision and feature selection. Biological Cybernetics, 90(3), 218228.
  • Fodor, J. A. (1981). Representations: Philosophical essays on the foundations of cognitive science. Cambridge, MA: MIT Press.
  • Gallagher, S. (2008). Are minimal representations still representations? International Journal of Philosophical Studies, 16(3), 351369.
  • Garzon, F. C. (2008). Towards a general theory of antirepresentationalism. British Journal for the Philosophy of Science, 59(3), 259292.
  • van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 92(7), 345381.
  • van Gelder, T. J. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21, 615665.
  • van Gelder, T. J. (1999). Dynamic approaches to cognition. In R. Wilson & F. Keil (Eds.), The MIT encyclopedia of cognitive sciences, (pp. 243245). Cambridge, MA: MIT Press.
  • Gentner, D. (2003). Why we are so smart. In D. Gentner & S. Goldin-Meadow (Eds.), Language in mind (pp. 195235). Cambridge, MA: MIT Press.
  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
  • Gigliotta, O., & Nolfi, S. (2008). On the coupling between agent internal and agent/environmental dynamics: Development of spatial representations in evolving autonomous robots. Adaptive Behavior, 16, 148165.
  • Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20(01), 155.
  • Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377396.
  • Harnad, S. (2005). To cognize is to categorize: Cognition is categorization. In H. Cohen & C. Lefebvre (Eds.), handbook of categorization in cognitive science (pp. 2045). Oxford, England: Elsevier.
  • Harvey, I. (1996). Untimed and misrepresented: Connectionism and the computer metaphor. AISB Quarterly, 96, 2027.
  • Harvey, I., Husbands, P., & Cliff, D. (1994). Seeing the light: artificial evolution, real vision. In D. Cliff, P. Husbands, J-A. Meyer, & S. W. Wilson (Eds.), From animals to animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behavior (pp. 392401). Cambridge, MA: MIT Press.
  • Haselager, P., De Groot, A., & van Rappard, H. (2003). Representationalism vs. antirepresentationalism: a debate for the sake of appearance. Philosophical Psychology, 16(1), 524.
  • Haugeland, J. (1991). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence, (pp. 134). Cambridge, MA: MIT Press.
  • Hesslow, G. (2002). Conscious thought as simulation of behavior and perception. Trends in Cognitive Sciences, 6(6), 242247.
  • Hope, T., Stoianov, I., & Zorzi, M. (2010). Through neural stimulation to behavior manipulation: A novel method for analizing dynamical cognitive models. Cognitive Science, 34, 406433.
  • Jeannerod, M. (2006). Motor cognition: What actions tell to the self. Oxford, England: Oxford University Press.
  • Jeannerod, M., Arbib, M. A., Rizzolatti, G., & Sakata, H. (1995). Grasping objects: The cortical mechanisms of visuomotor transformation. Trends in Neuroscience, 18(7), 314320.
  • Keijzer, F. A. (2001). Representation and behavior. Cambridge, MA: MIT Press.
  • Keinan, A., Meilijson, C., Ruppin, E., Hilgetag, C., & Meilijson, I. (2003). Fair attribution of functional contribution in artificial and biological networks. Neural Computationa, 16, 18871915.
  • Kelso, J. (1995). Dynamic patterns. Cambridge, MA: MIT Press.
  • Lupyan, G. (2005). Carving nature at its joints and carving joints into nature: How labels augment category representations. In A. Cangelosi, G. Bugmann, & R. Borisyuk (Eds.), Modelling language, cognition and action: Proceedings of the 9th Neural Computation and Psychology Workshop (pp. 8796). Singapore: World Scientific.
  • Markman, A., & Dietrich, E. (2000a). In defense of representation. Cognitive Psychology, 40, 138171.
  • Markman, A. B., & Dietrich, E. (2000b). Extending the classical view of representation. Trends in Cognitive Sciences, 4(12), 470475.
  • Meyer, J.-A., & Wilson, S. W. (Eds.). (1990). From animals to animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press.
  • Millikan, R. G. (1984). Language, thought and other biological categories. Cambridge MA: MIT Press.
  • Millikan, R. G. (1996). Pushmi-pullyu representations. Philosophical Perspectives, 9, 185200.
  • Mirolli, M., & Parisi, D. (2005a). How can we explain the emergence of a language which benefits the hearer but not the speaker? Connection Science, 17(3-4), 325341.
  • Mirolli, M., & Parisi, D. (2005b). Language as an aid to categorization: A neural network model of early language acquisition. In A. Cangelosi, G. Bugmann & R. Borisyuk (Eds.), Modelling language, cognition and action: Proceedings of the 9th Neural Computation and Psychology Workshop (pp. 97106). Singapore: World Scientific.
  • Mirolli, M., & Parisi, D. (2006). Talking to oneself as a selective pressure for the emergence of language. In A. Cangelosi, A. Smith, & K. Smith (Eds.), The evolution of language: Proceedings of the 6th International Conference on the Evolution of Language (pp. 214221). Hackensack, NJ: World Scientific Publishing.
  • Mirolli, M., & Parisi, D. (2009). Language as a cognitive tool. Minds and Machines, 19(4), 517528.
  • Mirolli, M., & Parisi, D. (2011). Towards a Vygotskyan cognitive robotics: The role of language as a cognitive tool. New Ideas in Psychology, 29, 298311.
  • Mirolli, M., Ferrauto, T., & Nolfi, S. (2010). Categorisation through evidence accumulation in an active vision system. Connection Science, 22(4), 331354.
  • Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., & Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area f5) of the monkey. Journal of Neurophysiology, 78(4), 22262230.
  • Noë, A. (2004). Action in perception. Cambridge, MA: MIT Press.
  • Nolfi, S. (1997). Evolving non-trivial behavior on autonomous robots: Adaptation is more powerful than decomposition and integration. In T. Gomi (Ed.), Evolutionary robotics (pp. 2148). Ontario: AAI Books.
  • Nolfi, S. (1998). Evolutionary robotics: Exploiting the full power of self-organization. Connection Science, 10(3-4), 167183.
  • Nolfi, S. (2002). Power and limits of reactive agents. Neurocomputing, 49, 119145.
  • Nolfi, S., & Marocco, D. (2001). Evolving robots able to integrate sensory-motor information over time. Theory in Biosciences, 120(3), 287310.
  • Parisi, D., Cecconi, F., & Nolfi, S. (1990). Econets: Neural networks that learn in an environment. Network, 1, 149168.
  • Pezzulo, G. (2008). Coordinating with the future: The anticipatory nature of representation. Minds and Machines, 18, 179225.
  • Pfeifer, R., & Bongard, J. C. (2006). How the body shapes the way we think: A new view of intelligence. Cambridge, MA: MIT Press.
  • Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press.
  • Port, R. F., & van Gelder, T., (eds.) ()1995). Mind as motion. Cambridge, MA: MIT Press.
  • Prinz, J., & Barsalou, L. (2000). Steering a course for embodied representation. In E. Dietrich & A. Markman (Eds.), Cognitive dynamics: Conceptual change in humans and machines (pp. 5177). Cambridge, MA: MIT Press.
  • Ramsey, W. M. (2007). Representation reconsidered. Cambridge, England: Cambridge University Press.
  • Rizzolatti, G., & Sinigaglia, C. (2008). Mirrors in the brain. how our minds share actions and emotions. Oxford, England: Oxford University Press.
  • Rizzolatti, G., Camarda, R., Fogassi, M., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey: Ii. area f5 and the control of distal movements. Experimental Brain Research, 71, 491507.
  • Rumelhart, D., Hintont, G., & Williams, R. (1986a). Learning representations by back-propagating errors. Nature, 323(6088), 533536.
  • Rumelhart, D., McClelland, J., & the PDP Research Group (1986b). Parallel distributed processing: explorations in the microstructure of cognition (Vols. 1-2). Cambridge, MA: MIT Press.
  • Scheier, C., Pfeifer, R., & Kunyioshi, Y. (1998). Embedded neural networks: Exploiting constraints. Neural Network, 11(7–8), 15511569.
  • Schyns, P. G. (1991). A modular neural network model of concept acquisition. Cognitive Science, 15(4), 461508.
  • Seth, A. (2008). Causal networks in simulated neural systems. Cognitive Neurodynamics, 2(1), 4964.
  • Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24(1), 4965.
  • Smith, B. C. (1996). On the origin of objects. Cambridge, MA: MIT Press.
  • Spelke E. S. (2003). What makes us smart? Core knowledge and natural language. In D. Gentner & Goldin-Meadow, S. (Eds.), Language in mind (pp. 277311). Cambridge, MA: MIT Press.
  • Spencer, J. P., & Schoner, G. (2003). Bridging the representational gap in the dynamic systems approach to development. Developmental Science, 6(4), 392412.
  • Steels, L. (2003a). Intelligence with representation. Philosophical Transactions of the Royal Society A, 361(1811), 23812395.
  • Steels, L. (2003b). Language-reentrance and the ‘inner voice’. Journal of Consciousness Studies, 10(4–5), 173185.
  • Steels, L., & Brooks, R. (Eds.). (1994). The artificial life route to artificial intelligence: Building situated embodied agents. New Haven, CT: Lawrence Erlbaum.
  • Sugita, Y., & Tani, J. (2005). Learning semantic combinatoriality from the interaction between linguistic and behavioral processes. Adaptive Behavior, 13(1), 3352.
  • Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.
  • Tomasello, M. (2003). The key is social cognition. In D. Gentner & S. Goldin-Meadow (Eds.), Language in mind (pp. 4757). Cambridge, MA: MIT Press.
  • Tucker, M., & Ellis, R. (2001). The potentiation of grasp types during visual object categorization. Visual Cognition, 8, 769800.
  • VanRullen, R., Guyonneau, R., & Thorpe, S. J. (2005). Spike times make sense. Trends in Neurosciences, 28(1), 14.
  • Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind. Cambridge, MA: MIT Press.
  • Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.
  • Wheeler, M. (1994). From activation to activity. AISB Quarterly, 87, 3642.
  • Wheeler, M. (2005). Friends reunited? Evolutionary robotics and representational explanation. Artificial Life, 11(1-2), 215232.
  • Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum Press.