SEARCH

SEARCH BY CITATION

References

  • Bach, E., Brown, C., & Marslen-Wilson, W. (1986). Crossed and nested dependencies in German and Dutch: A psycholinguistic study. Language and Cognitive Processes 1, 249262.
  • Brooks, L. R., & Vokey, J. R. (1991). Abstract analogies and abstracted grammars: A comment on Reber and Mathews et al. Journal of Experimental Psychology: General 120, 316323.
  • Chomsky, N. (1963). Formal properties of grammars. In R. D. Luce, R. R. Bush & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 2, pp. 323418). New York: John Wiley.
  • Christiansen, M. H., & Chater, N. (1999). Toward a connectionist model of recursion in human linguistic performance. Cognitive Science, 23, 157205.
  • Cutland, N. J. (1980). Computability: An introduction to recursive function theory. Cambridge, UK: Cambridge University Press.
  • Davis, M., Sigal, R., & Weyuker, E. J. (1994). Computability, complexity, and languages: Fundamentals of theoretical computer science. San Diego, CA: Academic Press.
  • Desmet, C., Poulin-Charronnat, B., Lalitte, P., & Perruchet, P. (2009). Implicit learning of nonlocal musical rules: A comment on Kuhn and Dienes (2005). Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 299305.
  • Dienes, Z. (in press). Conscious versus unconscious learning of structure. In P. R. J. Williams (Ed.), Statistical learning and language acquisition. Amsterdam, The Netherlands: Mouton de Gruyter Publishers.
  • Dienes, Z., & Longuet-Higgins, C. (2004). Can musical transformations be implicitly learned? Cognitive Science, 28, 531558.
  • Fitch, W. T., & Hauser, M. D. (2004). Computational constraints on syntactic processing in a nonhuman primate. Science, 303, 377380.
  • Folia, V., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2011). Implicit artificial syntax processing: Genes, preference, and bounded recursion. Biolinguistics, 5, 105132.
  • Folia, V., Uddén, J., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2008). Implicit learning and dyslexia. Annals of the New York Academy of Sciences, 1145, 132150.
  • Forkstam, C., Elwér, Å., Ingvar, M., & Petersson, K. M. (2008). Instruction effects in implicit artificial grammar learning: A preference for grammaticality. Brain Research, 1221, 8092.
  • Forkstam, C., Hagoort, P., Fernandez, G., Ingvar, M., & Petersson, K. M. (2006). Neural correlates of artificial syntactic structure classification. NeuroImage, 32, 956967.
  • Forkstam, C., & Petersson, K. M. (2005). Towards an explicit account of implicit learning. Current Opinion in Neurology, 18, 435441.
  • Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440, 12041207.
  • Glanzer, M., & Cunitz, A. R. (1966). Two storage mechanisms in free recall. Journal of Verbal Learning and Verbal Behavior, 5, 351360.
  • Gomez, R. L. (2002). Variability and detection of invariant structure. Psychological Science, 13, 431436.
    Direct Link:
  • Gómez, R. L., & Maye, J. (2005). The developmental trajectory of nonadjacent dependency learning. Infancy, 7, 183206.
  • Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416423.
  • Hochmann, J.-R., Azadpour, M., & Mehler, J. (2008). Do humans really learn AnBn artificial grammars from exemplars? Cognitive Science: A Multidisciplinary Journal, 32, 10211036.
  • Johnstone, T., & Shanks, D. R. (2001). Abstractionist and processing accounts of implicit learning. Cognitive Psychology, 42, 61112.
  • Kessels, H. W., & Malinow, R. (2009). Synaptic AMPA receptor plasticity and behavior. Neuron, 61, 340350.
  • Koch, C. (1999). Biophysics of computation: Information processing in single neurons. New York: Oxford University Press.
  • Koch, C., & Poggio, T. (1985). A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry. Journal of Neuroscience Methods, 12, 303315.
  • Koch, C., & Poggio, T. (1992). Multiplying with synapses and neurons. In T. McKenna, J. Davis, & S. F. Zornetzer (Eds.), Single neuron computation (pp. 315345). San Diego, CA: Academic Press Professional, Inc.
  • Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: Implicitly learning more than chunks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 14171432.
  • Kuhn, G., & Dienes, Z. (2006). Differences in the types of musical regularities learnt in incidental and intentional learning conditions. Quarterly Journal of Experimental Psychology, 59, 17251744.
  • Levelt, W. J. M. (1974). Formal grammars in linguistics and psycholinguistics. (Vol. III, Psycholinguistic applications). The Hague, The Netherlands: Mouton.
  • Mathews, R. C., Buss, R. R., Stanley, W. B., Blanchard-Fields, F., Cho, J. R., & Druhan, B. (1989). Role of implicit and explicit processes in learning from examples: A synergistic effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 10831100.
  • Meulemans, T., & Van der Linden, M. (1997). Associative chunk strength in artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 10071028.
  • Minsky, M. L. (1967). Computation: Finite and infinite machines. Englewood Cliffs, NJ: Prentice Hall.
  • Newport, E. L., & Aslin, R. N. (2004). Learning at a distance I. Statistical learning of non-adjacent dependencies. Cognitive Psychology, 48, 127162.
  • Newport, E. L., Hauser, M. D., Spaepen, G., & Aslin, R. N. (2004). Learning at a distance II. Statistical learning of non-adjacent dependencies in a non-human primate. Cognitive Psychology, 49, 85117.
  • Petersson, K. M. (2005). On the relevance of the neurobiological analogue of the finite-state architecture. Neurocomputing, 65–66, 825832.
  • Petersson, K. M. (2008). On cognition, structured sequence processing, and adaptive dynamical systems. Proceedings of the American Institute of Physics, 1060, 195199.
  • Petersson, K. M., Folia, V., & Hagoort, P. (2010). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 170, 155164. doi:10.1016/j.bandl.2010.08.003
  • Pullum, G. K., & Scholz, B. C. (2009). For universals (but not finite-state learning) visit the zoo. Behavioral and Brain Sciences, 32, 466467.
  • Pullum, G. K., & Scholz, B. C. (2010). Recursion and the infinitude claim. In H. v. d. Hulst (Ed.), Recursion in human language (pp. 19). Berlin: Mouton de Gruyter.
  • Reber, A. S., Walkenfeld, F. F., & Hernstadt, R. (1991). Implicit and explicit learning: Individual differences and IQ. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 888896.
  • Savage, J. E. (1998). Models of computation. Reading, MA: Addison-Wesley.
  • Shieber, S. M. (1985). Evidence against the context-freeness of natural language. Linguistics and Philosophy, 8, 333343.
  • Siegelmann, H. T. (1999). Neural networks and analog computation: Beyond the Turing limit. Basel, Switzerland: Birkhäuser.
  • Stadler, M. A., & Frensch, P. A. E. (1998). Handbook of implicit learning. Thousand Oaks, CA: Sage Publications.
  • Taylor, R. G. (1998). Models of computation and formal languages. Oxford, England: Oxford University Press.
  • Turing, A. (1936). On computable numbers with an application to the Entscheidungs problem (part 1). Proceedings of the London Mathematical Society, 42, 230240.
  • Uddén, J., Folia, V., Forkstam, C., Ingvar, M., Fernandez, G., Overeem, S., van Elswijk, G., Hagoort, P., & Petersson, K. M. (2008). The inferior frontal cortex in artificial syntax processing: An rTMS study. Brain Research, 1224, 6978.
  • Uddén, J., Folia, V., & Petersson, K. M. (2010). Neuropharmacology of implicit learning. Current Neuropharmacology, 8, 367381.
  • Vosse, T., & Kempen, G. (2000). Syntactic structure assembly in human parsing: A computational model based on competitive inhibition and a lexicalist grammar. Cognition, 75, 105143.
  • de Vries, M. H., Christiansen, M. H., & Petersson, K. M. (2011). Learning recursion: Multiple nested and crossed dependencies. Biolinguistics, 5, 1035.
  • de Vries, M. H., Monaghan, P., Knecht, S., & Zwitserlood, P. (2008). Syntactic structure and artificial grammar learning: The learnability of embedded hierarchical structures. Cognition, 107, 763774.
  • Wells, A. (2005). Rethinking cognitive computation: Turing and the science of the mind. Hampshire, UK: Palgrave Macmillan.
  • Zajonc, R. B. (1968). Attitudinal effects of mere exposure. Journal of Personality and Social Psychology, 9, 127.