SEARCH

SEARCH BY CITATION

References

  • Ajzen, I. (1977). Intuitive theories of events and effects of base-rate information on prediction. Journal of Personality and Social Psychology, 35, 303314.
  • Brem, S. K., & Rips, L. J. (2000). Explanation and evidence in informal argument. Cognitive Science, 24, 573604.
  • Chapman, L. J., & Chapman, J. P. (1969). Illusory correlation as an obstacle to use of valid psychodiagnostic signs. Journal of Abnormal Psychology, 74, 271280.
  • Cheng, P. W. (1997). From covariation to causation: A causal power theory. Psychological Review, 104, 367405.
  • Crisp, A. K., & Feeney, A. (2009). Causal conjunction fallacies: The roles of causal strength and mental resources. Quarterly Journal of Experimental Psychology, 12, 23202337.
  • Dougherty, M. R. P., Gettys, C. F., & Thomas, R. P. (1997). The role of mental simulation in judgments of likelihood. Organizational Behavior and Human Decision Processes, 70, 135148.
  • Fabre, J.-M., Caverni, J.-P., & Jungermann, H. (1995). Causality does influence conjunctive probability judgments if context and design allow for it. Organizational Behavior and Human Decision Processes, 63, 15.
  • Fabre, J.-M., Caverni, J.-P., & Jungermann, H. (1997). Effects of event probability and causality on the conjunction fallacy. Swiss Journal of Psychology, 56, 106111.
  • Fernbach, P. M., Darlow, A., & Sloman, S. A. (2010). Neglect of alternative causes in predictive but not diagnostic reasoning. Psychological Science., 21(3), 329336.
  • Fernbach, P. M., Darlow, A., & Sloman, S. A. (2011). Asymmetries in predictive and diagnostic reasoning. Journal of Experiment Psychology: General, 140, 168185.
  • Fernbach, P. M., & Sloman, S. A. (2009). Causal learning with local computations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 678693.
  • Griffiths, T. L., & Tenenbaum, J. B. (2005). Structure and strength in causal induction. Cognitive Psychology, 51, 354384.
  • Hagmayer, Y., & Sloman, S. A. (2009). Decision makers conceive of themselves as interveners, not observers. Journal of Experimental Psychology: General, 138, 2238.
  • Hume, D. (1976). An enquiry concerning human understanding. Indianapolis, IN: Hackett Publishing Company.
  • Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (2006, July 16-20). Learning systems of concepts with an infinite relational model. 21st National Conference on Artificial Intelligence, Boston, MA.
  • Krynski, T. R., & Tenenbaum, J. B. (2007). The role of causality in judgment under uncertainty. Journal of Experimental Psychology: General, 136, 430450.
  • Lagnado, D. A., Waldmann, M. R., Hagmayer, Y., & Sloman, S. A. (2007). Beyond covariation: Cues to causal structure. In A. Gopnik & L. Schulz (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 154172). Oxford, England: Oxford University Press.
  • Lu, H., Yuille, A. L., Liljeholm, M., Cheng, P. W., & Holyoak, K. J. (2008). Bayesian generic priors for causal learning. Psychological Review, 115, 955984.
  • Nozick, R. (1993). The nature of rationality. Princeton, NJ: Princeton University Press.
  • Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge, England: Cambridge University Press.
  • Pennington, N., & Hastie, R. (1993). Reasoning in explanation-based decision-making. Cognition, 49, 123163.
  • Rehder, B. (2009). Causal-based property generalization. Cognitive Science, 33, 301343.
  • Rottenstreich, Y., & Tversky, A. (1997). Unpacking, repacking, and anchoring: Advances in support theory. Psychological Review, 104, 406415.
  • Sloman, S. A. (2005). Causal models: How we think about the world and its alternatives. New York: Oxford University Press.
  • Sloman, S. A., & Hagmayer, Y. (2006). The causal psycho-logic of choice. Trends in Cognitive Sciences, 10, 407412.
  • Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search. New York: Springer-Verlag.
  • SPSS, Inc. (2001). The SPSS TwoStep Cluster Component: A scalable component enabling more efficient customer segmentation. Technical Report. Available at: http://www.spss.ch/upload/1122644952_The%20SPSS%20TwoStep%20Cluster%20Component.pdf. [accessed on may 23, 2012].
  • Suppes, P. (1970). A probabilistic theory of causality. Amsterdam: North-Holland Publishing Company.
  • Tversky, A., & Kahneman, D. (1982). Evidential impact of base rates. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 153160). Cambridge, UK: Cambridge University Press.
  • Tversky, A., & Kahneman, D. (1983). Extensional vs. intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 9, 293315.
  • Tversky, A., & Koehler, D. (1994). Support Theory: A nonextensional representation of subjective probability. Psychological Review, 101, 547567.
  • White, P. A. (2006). The causal asymmetry. Psychological Review, 113, 132147.
  • Zhang, T., Ramakrishnon, R., & Livny, M. (1996). BIRCH: An efficient data clustering method for very large databases. In Proceedings of the ACM SIGMOD conference on management of data (pp. 103114). Montreal, Canada: ACM.