SEARCH

SEARCH BY CITATION

References

  • 1
    Becker LB. The epidemiology of sudden death. In: ParadisNA, HalperinH, NowakR.. Cardiac Arrest: The Science and Practice of Resuscitation Medicine, Baltimore , MD : Williams & Wilkins,1996.
  • 2
    Eisenberg MS, Horwood BT, Cummins RO. Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 1990; 19: 17986.
  • 3
    Larsen MP, Eisenberg MS, Cummins RO, Hallstrom AP. Predicting survival from out-of-hospital cardiac arrest: a graphic model. Ann Emerg Med 1993; 22: 16528.
  • 4
    Emergency Cardiac Care and Committee and Subcommittees, American Heart Association. Guidelines for cardiopulmonary resuscitation. Part 6: Advanced Cardiovascular Life Support, Section 2: Defibrillation. Resuscitation 2000; 46: 10913.
  • 5
    Kerber RE, Grayzel J, Hoyt R, Marcus M, Kennedy J. Transthoracic resistance in human defibrillation: influence of body weight, chest size, serial shocks, paddle size and paddle contact pressure. Circulation 1981; 63: 67682.
  • 6
    Sirna SJ, Ferguson DW, Charbonnier F, Kerber RE. Factors affecting transthoracic impedance during electrical cardioversion. Am J Cardiol 1988; 62: 104852.
  • 7
    Dahl CF, Ewy GA, Ewy MD, Thomas ED. Transthoracic impedance to direct current discharge: effect of repeated countershocks. Med Instrum 1976; 10: 1514.
  • 8
    Hargarten KM, Steuven HA, Waite EM. Prehospital experience with defibrillation of coarse ventricular fibrillation: a ten year review. Ann Emerg Med 1990; 19: 15762.
  • 9
    DiCola VC, Freedman GS, Downing SE, Zaret L. Myocardial uptake of technetium-99m stannous pyrophosphate following direct current transthoracic countershock. Circulation 1976; 54: 9806.
  • 10
    Doherty PW, McLaughlin PR, Billingham M, Hernoff R, Goris ML, Harrison DC. Cardiac damage produced by direct current countershock applied to the heart. Am J Cardiol 1979; 43: 22532.
  • 11
    Ehsani A, Eqy GA, Sobel BE. Effects of electrical countershock on serum creatine phosphokinase (CPK) isoenzyme activity. Am J Cardiol 1976; 37: 128.
  • 12
    Trouton PG, Allen JD, Young LK, Rooney JJ, Adgey AAJ. Metabolic changes and mitochondrial disfunction early following transthoracic countershocks in dogs. PACE 1989; 12: 182734.
  • 13
    Warner ED, Dahl C, Eqy GA. Myocardial injury from transthoracic defibrillator countershock. Arch Pathol 1975; 99: 5563.
  • 14
    Wilson CM, Allen JD, Bridges JB, Adgey AAJ. Death and damage caused by multiple direct current shocks: studies in animal model. Eur Heart J 1989; 10: 52836.
  • 15
    Cates AW, Wolf PD, Hillsley RE, Souza JJ, Smith WM, Ideker RE.: The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength. PACE 1994; 17: 120817.
  • 16
    Schuder JC, Gold JH, Stoeckle H, McDaniel WC, Cheung KN. Transthoracic ventricular defibrillation in the 100kg calf with symmetrical one-cycle bi-directional rectangular wave stimuli. IEEE Trans Biomed Eng 1983; 30: 41522.
  • 17
    Jones JL, Jones RE, Balasky G. Improved cardiac cell excitation with symmetrical biphasic defibrillator waveforms. Am J Physiol 1987; 253: H1418H1424.
  • 18
    Chapman PD, Vetter JW, Souza JJ, Wetherbee JN, Troup PJ. Comparison of monophasic with single and dual capacitator biphasic waveforms for nonthoracotomy canine internal fibrillation. J Am Coll Cardiol 1989; 14: 2425.
  • 19
    Gliner BE, Lyster TE, Dillion SM, Bardy GH. Transthoracic defibrillation of swine with monophasic and biphasic waveforms. Circulation 1995; 92: 163443.
  • 20
    Wyse DG, Kavanagh KM, Gillis AM. Comparison of biphasic and monophasic shocks for defibrillation using a nonthoracotomy system. Am J Cardiol 1993; 71: 197202.
  • 21
    Winkle AW, Mead RH, Ruder MA. Improved low-energy defibrillation efficacy in man with the use of a biphasic truncated exponential waveform. Am Heart J 1989; 117: 1227.
  • 22
    Bardy GH, Ivey TD, Allen MD, Johnson G, Mehra R, Greene HL. A prospective randomized evaluation of biphasic versus monophasic waveform pulses on defibrillation efficacy in humans. J Am Coll Cardiol 1989; 14: 72833.
  • 23
    Greene HL, Dimarco JP, Kudenchuck PJ. Comparison of monophasic and biphasic defibrillating pulse waveforms for thransthoracic cardioversion. Am J Cardiol 1995; 75: 11358.
  • 24
    Swartz JF, Fletcher RD, Karasik PE. Optimization of biphasic waveforms for human nonthoracotomy defibrillation. Circulation 1993; 88: 264654.
  • 25
    Jones JL, Milne KB. Dysfunction and safety factor strength—duration curves for biphasic defibrillator waveforms. Am J Physiol 1994; 266: H263H271.
  • 26
    Osswald S, Trouton TG, O'Nunain SS, Holden HB, Ruskin JN, Garan H. Relation between shock-related myocardial injury and defibrillation efficacy of monophasic and biphasic shocks in a canine model. Circulation 1994; 90: 25019.
  • 27
    Reddy RK, Gleva MJ, Gliner BE. Biphasic transthoracic defibrillation causes fewer ECG ST-segment changes after shock. Ann Emerg Med 1997; 30: 12734.
  • 28
    Bardy GH, Marchlinski FE, Sharma AD. Multicenter comparison of truncated biphasic shocks and standard damped sine wave monophasic shocks for transthoracic ventricular defibrillation. Circulation 1996; 94: 250714.
  • 29
    Scheatzle MD, Menegazzi JJ, Allen TL, Durham SB. Evalutaion of biphasic transthoracic defibrillation in an animal model of prolonged ventricular fibrillation. Acad Emerg Med 1999; 6: 8806.
  • 30
    Niemann JT, Burian D, Garner D, Lewis RJ. Monophasic versus biphasic transthoracic countershock after prolonged ventricular fibrillation in a swine model. J Am Coll Cardiol 2000; 36: 9328.
  • 31
    Poole JE, White RD, Kanz KG. Low-energy impedance-compensating biphasic waveforms terminate ventricular fibrillation at high rates in victims of out-of-hospital cardiac arrest. J Cardiovasc Electrophysiol 1997; 8: 137385.
  • 32
    Higgins SL, Herre JM, Epstein AE. A comparison of biphasic and monophasic shocks for external defibrillation. Prehosp Emerg Care 2000; 4: 30513.
  • 33
    Kaplan DT, Cohen RJ. Is fibrillation chaos? Circ Res 1990; 67: 88692.
  • 34
    Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature 1998; 392: 201.
  • 35
    Witkowski FX, Leon LJ, Penkoske PA. Spatiotemporal evolution of ventricular fibrillation. Nature 1998; 392: 7882.
  • 36
    Sherman LD, Callaway CW, Menegazzi JJ. Ventricular fibrillation exhibits dynamical properties and self-similarity. Resuscitation 2000; 47: 16373.
  • 37
    Callaway CW, Sherman LD, Menegazzi JJ, Scheatzle MD. Scaling structure of electrocardiographic waveform during prolonged ventricular fibrillation in swine. Pacing Clin Electrophysiol 2000; 2: 18091.
  • 38
    Callaway CW, Sherman LD, Mosesso VN, Dietrich TJ, Holt E, Clarkson MC. Scaling exponent predicts defibrillation success for out-of-hospital ventricular fibrillation cardiac arrest. Circulation 2001; 103: 165661.
  • 39
    Watson JN, Addison PS, Clegg GR, Holzer M, Sterz F, Robertson CE. A novel wavelet transform based analysis reveals hidden structure in ventricular fibrillation. Resuscitation 2000; 43: 1217.
  • 40
    Eftestøl, T, Sunde K, Aase SO, Husøy JH, Steenb PA. “Probability of successful defibrillation” as a monitor during CPR in out-of-hospital cardiac arrested patients. Resuscitation 2001; 48: 24554.
  • 41
    Automatic External Defibrillation Task Force, Weisfeldt ML, Kerber RE, McGoldrick RP American Heart Association report on the Public Access Defibrillation Conference December 8-10, 1994. Circulation 1995; 92: 27407.
  • 42
    Niemann JT, Cairns CB, Sharma J, Lewis RJ. Treatment of prolonged ventricular fibrillation, immediate countershock versus high-dose epinephrine and CPR preceding countershock. Circulation 1992; 85: 2817.
  • 43
    Menegazzi JJ, Davis EA, Yealy DM. An experimental algorithm versus standard Advanced Cardiac Life Support in a swine model of out-of-hospital cardiac arrest. Ann Emerg Med 1993; 22: 2359.
  • 44
    Menegazzi JJ, Seaberg DC, Yealy DM, Davis EA, MacLeod BA. Combination pharmacotherapy with delayed countershock vs standard Advanced Cardiac Life Support after prolonged ventricular fibrillation. Prehosp Emerg Care 2000; 4: 317.
  • 45
    Cobb LA, Fahrenbruch CE, Walsh TR. Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA 1999; 281: 11828.
  • 46
    Van Walraven C, Stiell IG, Wells GA, Herbert PC, Vandemheen K, the OTAC Study Group. Do Advanced Cardiac Life Support drugs increase resuscitation rates from in-hospital cardiac arrest? Ann Emerg Med 1998; 32: 54453.
  • 47
    Steill IG, Wells GA, Hebert PC, Laupacis A, Weitzman BN. Association of drug therapy with survival in cardiac arrest-limited role of Advanced Cardiac Life Support drugs. Acad Emerg Med 1995; 2: 26473.
  • 48
    Brown CG, Martin DR, Pepe PE. A comparison of standard-dose and high-dose epinephrine in cardiac arrest out-side the hospital. N Engl J Med 1992; 327: 10515.
  • 49
    Steill IG, Hebert PC, Weitzman BN. High-dose epinephrine in adult cardiac arrest. N Engl J Med 1992; 327: 104550.
  • 50
    Abramson NS, Safar P, Sutton-Tyrell K, Craig MT, for the BRCT III Study Group. A randomized clinical trial of escalating doses of high dose epinephrine during cardiac resuscitation [abstract]. Crit Care Med 1995; 23: A178.
  • 51
    Gueugniaud P-V, Mols P, Goldstein P A comparison of repeated high doses of epinephrine for cardiac arrest outside the hospital. N Engl J Med 1998; 339: 1595601.
  • 52
    Lee SK, Vaagenes P, Safar P., Effect of cardiac arrest time on cortical cerebral blood flow during subsequent standard external cardiopulmonary resuscitation in rabbits. Resuscitation 1989; 17: 10517.
  • 53
    Nagao K, Hayashi N, Kanmatsuse K. Cardiopulmonary cerebral resuscitation using emergency cardiopulmonary bypass, coronary reperfusion therapy and mild hypothermia in patients with cardiac arrest outside the hospital. J Am Coll Cardiol 2000; 36: 77683.
  • 54
    Reich H, Angelos M, Safar P, Sterz F, Lenov Y. Cardiac resuscitability with cardiopulmonary bypass after increasing fibrillation time in dogs. Ann Emerg Med 1990; 19: 88790.
  • 55
    Halperin HR, Tsitlik JE, Gelfand M. A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med 1993; 329: 7628.
  • 56
    Tang W, Weil MH, Schock RB. Phased chest and abdominal compression—decompression. A new option for cardiopulmonary resuscitation. Circulation 1997; 95: 133540.
  • 57
    Babbs CF. Efficacy of interposed abdominal compression—cardiopulmonary resuscitation (CPR), active compression and decompression-CPR and Lifestick CPR: basic physiology in a spreadsheet model. Crit Care Med 2000; 28(11 suppl):N199N202.
  • 58
    Callaway CW. Improving neurologic outcomes after out-of-hospital cardiac arrest. Prehosp Emerg Care 1997; 1: 4554.
  • 59
    De Vos R, De Haes HCJM, Koster RW, De Haan RJ. Quality of survival after cardiopulmonary resuscitation. Arch Intern Med 1999; 159: 24954.
  • 60
    Bjork RJ, Snyder BD, Campion BC, Lowenson RB. Medical complications of cardiopulmonary arrest. Arch Intern Med 1982; 142: 5003.
  • 61
    Gaussorgues P, Gueugniaud PY, Vedrine JM, Salord F, Mercatteelo A, Robert D. Bacteremia following cardiac arrest and cardiopulmonary resuscitation. Intens Care Med 1988; 14: 5757.
  • 62
    Mattana J, Singhala PC. Prevalence and determinants of acute renal failure following cardiopulmonary resuscitation. Arch Intern Med 1993; 153: 2359.
  • 63
    Braunwald E, Kloner RA.: The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 11469.
  • 64
    Entman ML, Smith CW. Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. Cardiovasc Res 1994; 28: 130111.
  • 65
    Juneau CF, Ito BR, del Balzo U, Engler RL. Severe neutrophil depletion by leukocyte filters or cytotoxic drug does not improve recovery of contractile function in stunned porcine myocardium. Cardiovasc Res 1993; 27: 7207.
  • 66
    Bolli RL. Role of neutrophils in myocardial stunning after brief ischaemia: the end of a six year old controversy (1987-1993). Cardiovasc Res 1993; 27: 72830.
  • 67
    Bolli R. Mechanism of myocardial “stunning.” Circulation 1990; 82: 7238.
  • 68
    Gao WD, Liu Y, Marban E. Selective effects of oxygen free radicals on excitation—contraction coupling in ventricular muscle. Circulation 1996; 94: 2597604.
  • 69
    Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999; 79: 60934.
  • 70
    Tang W, Weil MH, Sun S, Gazmuri RJ, Bisera J. Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 1993; 21: 104650.
  • 71
    Gazmuri RJ, Weil MH, Bisera J, Tang W, Fukui M, McKee D. Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 1996; 24: 9921000.
  • 72
    Kern KB, Hilwig RW, Rhee KH, Berg RA. Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol 1996; 28: 23240.
  • 73
    Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 1995; 92: 308993.
  • 74
    Xie J, Weil MH, Sun S. High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 1997; 96: 6838.
  • 75
    Sun S, Weil MH, Tang W, Fukui M. Effects of buffer agents on postresuscitation myocardial dysfunction. Crit Care Med 1996; 24: 203541.
  • 76
    Sun S, Weil MH, Tang W, Povoas HP, Mason E. Combined effects of buffer and adrenergic agents on postresuscitation myocardial function. J Pharmacol Exp Ther 1999; 291: 7737.
  • 77
    Becker LC, Levine JH, DiPaula AF, Guarnieri T, Aversano T. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 1986; 7: 5809.
  • 78
    Schulz R, Guth BD, Pieper K, Marin C, Heusch G. Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery. Circ Res 1992; 70: 128295.
  • 79
    Kida M, Fujiwara H, Uegaito T. Dobutamine prevents both myocardial stunning an phosphocreatine overshoot without affecting ATP level. J Mol Cell Cardiol 1993; 25: 87585.
  • 80
    Kern KB, Hilwig RW, Berg RA. Postresuscitation left ventricular systolic and diastolic dysfunction. Treatment with dobutamine. Circulation 1997; 95: 26103.
  • 81
    Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischemic conditions. Potential for pharmacological interventions. Cardiovasc Res 1997; 33: 24357.
  • 82
    Angelos MG, Torres CAA, Rath DP, Zhu H, Beckley PD, Robitaille PML. In vivo myocardial substrate alteration during perfused ventricular fibrillation. Acad Emerg Med 1999; 6: 5817.
  • 83
    Opie LH. Fuels: aerobic and anaerobic metabolism. In: The Heart Physiology, from Cell to Circulation, 3rd Edition, Philadelphia : Lippincott—Raven, 1998.
  • 84
    Weiss JN, Lamp ST. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science 1987; 238: 679.
  • 85
    Fath-Ordoubadi F, Beatt KJ. Glucose-insulin-potassium therapy for treatment of acute myocardial infarction: an overview of randomized placebo-controlled trials. Circulation 1997; 96: 11526.
  • 86
    Diaz R, Paolasso EA, Piegas LS. Metabolic modulation of acute myocardial infarction: the ECLA glucose-insulin-potassium pilot trial. Circulation 1998; 98: 222734.
  • 87
    Ceremuzynski L, Budaj A, Czepiel A. Low-dose glucose-insulin-potassium is ineffective in acute myocardial infarction: results of a randomized multicenter Pol-GIK trial. Cardiovasc Drugs Ther 1999; 13: 191200.
  • 88
    Zaninetti D, Greco-Perotto R, Assimacopoulos-Jeannet F, Jeanrenaud B. Effects of insulin on glucose transport and glucose transporters in rat heart. Biochem J 1988; 250: 277283.
  • 89
    Lucchesi BR, Median M, Kniffen FJ. The positive inotropic action of insulin in the canine heart. Eur J Pharmacol 1972; 18: 10715.
  • 90
    Angelos MG, Murray HN. Glucose-insulin-potassium (GIK) improves left ventricular function after global ischemia in the perfused rat heart [abstract]. Acad Emerg Med 1999; 6: 512.
  • 91
    Angelos MG, Murray HN, Gorsline RT. Glucose, insulin and potassium (GIK) improves myocardial bioenergetic recovery following global ischemia [abstract]. Circulation 1999; 100(suppl I):I664.
  • 92
    Svedjeholm R, Hakanson E, Szabo Z. Metabolic intervention for the ischemic and post-ischemic heart. Wien Klin Wochenschr 1999; 111: 50111.
  • 93
    Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts RL. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation 1985; 72: 91521.
  • 94
    Gross GJ, Farber NE, Hardman HF, Warltier DC. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 1986; 250: H372H377.
  • 95
    Przyklenk K, Kloner RA. Superoxide dismutase plus catalase improve contractile function in the canine model of the “stunned” myocardium. Circ Res 1986; 58: 14856.
  • 96
    Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap α-phenyl-N-tertbutyl nitrone. J Clin Invest 1988; 82: 47685.
  • 97
    Li XY, McCay PB, Zughaib M, Jeroudi MO, Triana JF, Bolli R. Demonstration of free radical generation in the “stunned” myocardium in the conscious dog and identification of major differences between conscious an open-chest dogs. J Clin Invest. 1993: 92: 102541.
  • 98
    Cerchiari EL, Sclabassi RJ, Safar P, Hoel TM. Effects of combined superoxide dismutase and deferoxamine on recovery of brainstem auditory evoked potentials and EEG after asphyxial cardiac arrest in dogs. Resuscitation 1990; 19: 2540.
  • 99
    Kaneko S, Okumura K, Numaguchi Y. Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury. Life Sci 2000; 67: 10112.
  • 100
    Walker MK, Vergely C, Lecour S, Adabie C, Maupoil V, Rochette L. Vitamin E analogues reduce the incidence of ventricular fibrillations and scavenge free radicals. Fundam Clin Pharm 1998; 12: 16472.
  • 101
    Abadie C, Ben Baouali A, Maupoil V, Rochette L. An alpha-tocopherol analogue with antioxidant activity improves myocardial function during ischemia reperfusion in isolated working rat hearts. Free Radic Biol Med 1993; 15: 20915.
  • 102
    Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983; 305: 1478.
  • 103
    Gross GJ, Garlid KD. ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 2000; 32: 67795.
  • 104
    Lui Y, Sato T, O'Rourke B, Marban E. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 1998; 97: 24639.
  • 105
    Auchampach JA, Maruyama M, Cavero I, Gross GJ. Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation 1992; 86: 3119.
  • 106
    Grover G, Newburger J, Sleph P. Cardioprotective effects of the potassium channel opener cromakalim: stereo-selectivity and effects on myocardial adenine nucleotides. J Pharmacol Exp Ther 1991; 257: 15672.
  • 107
    McPherson C, Pierce G, Cole W. Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation. Am J Physiol 1993; 265: H1809H1818.
  • 108
    Grover GJ, Garlid KD. ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 2000; 32: 67795.
  • 109
    D'Alonzo A, Darbenzio R, Rarham C, Grover G. Effects of intracoronary cromakalim on post-ischaemic contractile function and action potential duration. Cardiovasc Res 1992; 26: 104653.
  • 110
    Kitakaze M, Weisfeldt ML, Marban E. Acidosis during early reperfusion prevents myocardial stunning in perfused hearts. J Clin Invest 1988; 82: 9207.
  • 111
    Frelin C, Vigne P, Lazdunski M. The role of the Na+/H+ exchange system in the regulation of the internal pH in cultured cardiac cells. Eur J Biochem 1985; 149: 14.
  • 112
    van Emous JG, Schreur JHM, Ruigrok TJC, Van Echteld CJ. Both Na+-K+-ATPase and Na+/H+ exchanger are immediately active upon post-ischemic reperfusion in isolated rat hearts. J Mol Cell Cardiol 1998; 30: 33748.
  • 113
    Stomer H, de Groot MCH, Horn M Na+/H+ exchange inhibition with HOE642 improves postischemic recovery due to attenuation of Ca2+ overload and prolonged acidosis on reperfusion. Circulation 2000; 101: 274955.
  • 114
    Hartmann M, Decking UKM. Blocking Na+/H+ exchange by cariporide reduces Na+-overload in ischemia and is cardioprotective. J Mol Cell Cardiol 1999; 31: 1985995.
  • 115
    Ferguson JJ. Meeting highlights of the 48th Scientific Sessions of the American College of Cardiology. Circulation 1999; 100: 5705.
  • 116
    Erhardt LR. GUARD During Ischemia Against Necrosis (GUARDIAN) trial in acute coronary syndromes. Am J Cardiol 1999; 83: 23G25G.
  • 117
    Rupprecht HJ, vom Dahl J, Terres W Cardioprotective effects of the Na(+)/H(+) exchange inhibitor cariporide in patients with acute anterior myocardial infarction undergoing direct PTCA. Circulation 2000; 101: 29028.
  • 118
    Ehring T, Boehm M, Heusch G. The calcium antagonist nisoldipine improves the functional recovery of reperfused myocardium only when given before ischemia. J Cardiovasc Pharmacol 1992; 20: 6374.
  • 119
    Heusch G. Myocardial stunning: a role for calcium antagonists during ischaemia? Cardiovasc Res 1992; 26: 1419.
  • 120
    Przyklenk K, Kloner RA. Effect of verapamil on post-ischemic “stunned” myocardium: importance of the timing of treatment. J Am Coll Cardiol 1988; 11: 61423.
  • 121
    Park S-W, Tang X-L, Qiu Y, Sun J-Z, Bolli R. Nisoldipine attenuates myocardial stunning induced by multiple coronary occlusions in conscious pigs and this effect is independent of changes in hemodynamics or coronary blood flow. J Mol Cell Cardiol 1996; 28: 65566.
  • 122
    Mak IT, Boehme P, Weglicki WP. Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Correlation of protection with preservation of glutathione levels. Circ Res 1992; 70: 1099103.
  • 123
    Gao WD, Atar D, Liu Y. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 1997; 80: 3939.
  • 124
    Matsumura Y, Kusuoka H, Inoue M, Hori M, Kamada T. Protective effect of the protease inhibitor leupeptin against myocardial stunning. J Cardiovasc Pharmacol 1993; 22: 13542.
  • 125
    Gao WE, Liu Y, Marban E.: Mechanism of decreased myofilaments Ca2+ responsiveness in stunned rat ventricular myocardium: relative roles of soluble cytosolic factors versus structural alterations. Circ Res 1996; 78: 45565.
  • 126
    Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med 2000; 36: 483506.
  • 127
    Eleff SM, Schleien CL, Koehler RC. Brain bioenergetics during cardiopulmonary resuscitation in dogs. Anesthesiology 1992; 76: 7784.
  • 128
    Globus MYT, Ginsberg MD, Busto R. Excitotoxic index—a biochemical marker of selective vulnerability. Neurosci Lett 1991; 127: 3942.
  • 129
    Katz L, Callaway CW, Kagan VE, Kochanek PM. Electron spin resonance measure of brain antioxidant activity during ischemia/reperfusion. Neuroreport 1998; 9: 158793.
  • 130
    White BC, Winegar CP, Henderson O. Prolonged hypoperfusion in the cerebral cortex following cardiac arrest and resuscitation in dogs. Ann Emerg Med 1983; 12: 4147.
  • 131
    Wolfson SK, Safar P, Reich H. Dynamic heterogeneity of cerebral hypoperfusion after prolonged cardiac arrest in dogs measured by the stable xenon/CT technique: a preliminary study. Resuscitation 1992; 23: 120.
  • 132
    Salmien A, Liu PK, Hsu CY. Alteration of transcription factor binding activities in the ischemic rat brain. Biochem Biophys Res Commun 1995; 212: 93944.
  • 133
    Kiessling M, Stumm G, Xie Y. Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metab 1993; 13: 91424.
  • 134
    Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC. Upregulation of bax protein levels in neurons following cerebral ischemia. J Neurosci 1995; 15: 636476.
  • 135
    Chen J, Zhu RL, Nakayama M. Expression of the apoptosis-effector gene, Bax, is up-regulated in vulnerable hippocampal CA1 neurons following global ischemia. J Neurochem 1996; 67: 6471.
  • 136
    Chen J, Nagayama T, Jin K. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 1998; 18: 491428.
  • 137
    Chen J, Graham SH, Nakayama M. Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab 1997; 17: 210.
  • 138
    Krajewski S, Krajewska M, Ellerby LM. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A 1999; 96: 57527.
  • 139
    MacManus JP, Buchan AM, Hill IE, Rasquinha I, Preston E. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett 1993; 164: 8992.
  • 140
    Brain Resuscitation Clinical Trial I Study Group. Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med 1986; 314: 397403.
  • 141
    Brain Resuscitation Clinical Trial II Study Group. A randomized clinical study of a calcium-entry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. N Engl J Med 1991; 324: 122531.
  • 142
    Nellgard B, Wieloch T. Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cereb Blood Flow Metab 1992; 12: 211.
  • 143
    Sterz F, Leonov, Y, Safar P Effect of excitatory amino acid receptor blocker MK-801 on overall, neurologic and morphologic outcome after prolonged cardiac arrest in dogs. Anesthesia 1989; 71: 90718.
  • 144
    Silbergleit R, Haywood Y, Fiskum G, Rosenthal RE. Lack of a neuroprotective effect from N-acetylcysteine after cardiac arrest and resuscitation in a canine model. Resuscitation 1999; 40: 1816.
  • 145
    Lipinski CA, Hicks SD, Callaway CW. Effect of normoxic ventilation on outcome after asphyxial cardiac arrest in rats. Resuscitation 1999; 42: 2219.
  • 146
    Himi T, Ishizaki Y, Murota S. A caspase inhibitor blocks ischaemia-induced delayed neuronal death in the gerbil. Eur J Neurosci 1998; 10: 77781.
  • 147
    Li H, Colbourne F, Sun P, Zhao Z, Buchan AM, Iadecola C. Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. Stroke 2000; 31: 17682.
  • 148
    Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab 1999; 19: 7429.
  • 149
    Kuboyama K, Safar P, Radovsky A, Tisherman SA, Stezoski SW, Alexander H. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med 1993; 21: 134858.
  • 150
    Xiao F, Safar P, Radovsky A. Mild protective and resuscitative hypothermia for asphyxial cardiac arrest in rats. Am J Emerg Med 1998; 16: 1725.
  • 151
    Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 1989; 20: 90410.
  • 152
    Kil HY, Zhang J, Piantadosi CA. Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J Cereb Blood Flow Metab 1996; 16: 1006.
  • 153
    Hicks SD, Parmele KT, DeFranco DB, Klann E, Callaway CW. Hypothermia differentially increases ERK and JNK/SAPK activation in hippocampus after asphyxial cardiac arrest. Neuroscience 2000; 98: 67785.
  • 154
    Leonov Y, Sterz F, Safar P, Johnson DW, Tisherman SA, Oku K. Hypertension with hemodilution prevents multifocal cerebral hypoperfusion after cardiac arrest in dogs. Stroke 1992; 23: 4553.
  • 155
    Zeiner A, Holzer M, Sterz F. Mild resuscitative hypothermia to improve neurological outcome after cardiac arrest. A clinical feasibility trial. Hypothermia After Cardiac Arrest (HACA) Study Group. Stroke 2000; 3: 8694.