• forensic science;
  • latent fingerprint;
  • print visualization;
  • metal corrosion;
  • electrochemical mechanism;
  • Schottky barrier

Abstract:  From an examination of the fingerprint sweat corrosion of 40 different individuals on α phase brass, we show that an increase in visualization can be achieved by applying a negative potential to the brass followed by the introduction of a conducting powder. Previously, this technique has been demonstrated only for a positive applied potential and a corrosion product that was dominated by p-type copper (I) oxide. X-ray photoelectron and Auger electron spectroscopic analyses of the surface of the corroded brass show that an increase in visualization with a negative applied potential corresponds with an increase in the concentration of n-type zinc oxide relative to p-type copper (I) oxide with the Cu:Zn ratio <0.8:1. Work function conditions for the formation of an n-type zinc oxide/brass rectifying Schottky barrier are fulfilled.