SEARCH

SEARCH BY CITATION

Keywords:

  • Alsophila;
  • climatic trigger;
  • Cyathea;
  • Cyatheaceae;
  • Pliocene;
  • rapid radiation;
  • Western Indian Ocean

More than 80% of Madagascar's 12,000 plant species are endemic with the degree of endemism reaching as much as 95% in the scaly tree ferns, an important species rich component of Madagascar's evergreen rainforests. Predominantly African or Asian ancestry and divergence times usually postdating the separation of Madagascar from the Gondwanan landmasses have been demonstrated for several Madagascan animal and angiosperm groups. However, evolutionary studies of rainforest-specific lineages are scarce and the ecological context of radiation events has rarely been investigated. Here, we examine the evolution of Madagascan tree ferns as a rainforest-specific model family, integrate results from bioclimatic niche analysis with a dated phylogenetic framework, and propose an evolutionary scenario casting new light on our knowledge of the evolution of large island endemic clades. We show that Madagascar's extant tree fern diversity springs from three distinct ancestors independently colonizing Madagascar in the Miocene and that these three monophyletic clades diversified in three coincident radiation bursts during the Pliocene, reaching exceptionally high diversification rates and most likely responding to a common climatic trigger. Recent diversification bursts may thus have played a major role in the evolution of the extant Madagascan rainforest biome, which hence contains a significant number of young, neoendemic taxa.