CONTEMPORARY CULTURAL EVOLUTION OF A CONSPECIFIC RECOGNITION SIGNAL FOLLOWING SERIAL TRANSLOCATIONS

Authors


Abstract

The divergence of conspecific recognition signals (CRS) among isolated populations facilitates the evolution of behavioral barriers to gene flow. The influence of CRS evolution on signal effectiveness in isolated populations can be assessed by testing the salience of changes in CRS from surviving ancestral populations but founder events are rarely detected. The population history of the North Island (NI) saddleback Philesturnus rufusater is absolutely known following conservation translocations which increased the number of populations from 1 to 15. With one exception there is no gene flow between these populations. The translocations have generated interisland divergence of male rhythmical song (MRS), a culturally transmitted CRS. We conducted an experimental test of behavioral discrimination in NI saddlebacks exposed to familiar and unfamiliar MRS and found that responses were significantly stronger for familiar MRS, consistent with a model of contemporary cultural evolution leading to discrimination between geographic song variants. Significantly, this result demonstrates the rapid tempo with which discrimination of CRS might evolve within isolated populations and supports both bottleneck and cultural mutation hypotheses in CRS evolution. The evolutionary implications of contemporary cultural evolution in the production and perception of CRS merit debate on the time frames over which conservation management is evaluated.

Ancillary