SEARCH

SEARCH BY CITATION

Keywords:

  • Deleterious mutations;
  • diffusion equations;
  • genetic hitchhiking;
  • Hill–Robertson effects;
  • selective sweep

When new advantageous alleles arise and spread within a population, deleterious alleles at neighboring loci can hitchhike alongside them and spread to fixation in areas of low recombination, introducing a fixed mutation load. We use branching processes and diffusion equations to calculate the probability that a deleterious allele hitchhikes and fixes alongside an advantageous mutant. As expected, the probability of fixation of a deleterious hitchhiker rises with the selective advantage of the sweeping allele and declines with the selective disadvantage of the deleterious hitchhiker. We then use computer simulations of a genome with an infinite number of loci to investigate the increase in load after an advantageous mutant is introduced. We show that the appearance of advantageous alleles on genetic backgrounds loaded with deleterious alleles has two potential effects: it can fix deleterious alleles, and it can facilitate the persistence of recombinant lineages that happen to occur. The latter is expected to reduce the signals of selection in the surrounding region. We consider these results in light of human genetic data to infer how likely it is that such deleterious hitchhikers have occurred in our recent evolutionary past.