• Aging;
  • coincidence;
  • condition dependence;
  • deleterious mutations;
  • recombination

At the population level, recombination mediates the efficiency with which selection can eliminate deleterious mutations. At the individual level, deleterious alleles may influence recombination, which would change the rate at which linkage disequilibrium is eroded and thereby alter the efficiency with which deleterious alleles are purged. Here, we test whether the presence of a deleterious allele on one autosome affects recombination on another autosome. We find that deleterious alleles not only alter the rate but also the pattern of recombination. However, there is little support that different deleterious alleles affect recombination in a consistent manner. Because we have detailed information on individual females across their lifetimes, we are able to examine how recombination patterns change with age and find that these patterns are also affected by the presence of deleterious alleles. The differences among genotypes or among age classes are large enough to add substantial noise to genetic mapping experiments that do not consider these sources of variation.