• Divergence;
  • FST;
  • gene flow;
  • isolation with migration;
  • species diagnosis;
  • species problem

Species as evolutionary lineages are expected to show greater evolutionary independence from one another than are populations within species. Two measures of evolutionary independence that stem from the study of isolation-with-migration models, one reflecting the amount of gene exchange and one reflecting the time of separation, were drawn from the literature for a large number of pairs of closely related species and pairs of populations within species. Both measures, for gene flow and time, showed broadly overlapping distributions for pairs of species and for pairs of populations within species. Species on average show more time and less gene flow than populations, but the similarity of the distributions argues against there being a qualitative difference associated with species status, as compared to populations. The two measures of evolutionary independence were similarly correlated with FST estimates, which in turn also showed similar distributions for species comparisons relative to population comparisons. The measures of gene flow and separation time were examined for the capacity to discriminate intraspecific differences from interspecific differences. If used together, the two measures could be used to develop an objective (in the sense of being repeatable) measure for species diagnosis.