• Catalytic capacity;
  • electron transport system;
  • haplogroup;
  • introgression;
  • mitochondrial DNA

Linking the mitochondrial genotype and the organismal phenotype is of paramount importance in evolution of mitochondria. In this study, we determined the differences in catalytic properties of mitochondria dictated by divergences in the siII and siIII haplogroups of Drosophila simulans using introgressions of siII mtDNA type into the siIII nuclear background. We used a novel in situ method (permeabilized fibers) that allowed us to accurately measure the consumption of oxygen by mitochondria in constructed siII-introgressed flies and in siIII-control flies. Our results showed that the catalytic capacity of the electron transport system is not impaired by introgressions, suggesting that the functional properties of mitochondria are tightly related to the mtDNA haplogroup and not to the nuclear DNA or to the mito-nuclear interactions. This is the first study, to our knowledge, that demonstrates a naturally occurring haplogroup can confer specific functional differences in aspects of mitochondrial metabolism. This study illustrates the importance of mtDNA changes on organelle evolution and highlights the potential bioenergetic and metabolic impacts that divergent mitochondrial haplogroups may have upon a wide variety of species including humans.