SEARCH

SEARCH BY CITATION

References

  • Barnett JA (2003) A history of research on yeasts 5: the fermentation pathway. Yeast 20: 509543.
  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M & Edgar R (2006) NCBI GEO: mining tens of millions of expression profiles – database and tools update. Nucleic Acids Res 35: D760D765.
  • Bartowsky EJ & Henschke PA (2004) The ‘buttery’ attribute of wine-diacetyl-desirability, spoilage and beyond. Int J Food Microbiol 96: 235252.
  • Beck T & Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689692.
  • Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF & Zheng XF (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275: 3572735733.
  • Blinder D & Magasanik B (1995) Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene. J Bacteriol 177: 41904193.
  • Boer VM, De Winde JH, Pronk JT & Piper MD (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278: 32653274.
  • Bro C, Regenberg B & Nielsen J (2004) Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism. Biotechnol Bioeng 85: 269276.
  • Castor JGB (1953) The free amino acids of must and wines. II. The fate of amino acids of must during alcoholic fermentation. J Food Res 19: 146151.
  • Coffman JA & Cooper TG (1997) Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. J Bacteriol 179: 56095613.
  • Cooper T (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26: 223238.
  • Cooper TG (1982) Nitrogen metabolism in Saccharomyces cerevisiae. The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, (StrathernJN, JonesEW & BroachJR, eds) pp. 3999. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Cooper TG & Sumrada RA (1983) What is the function of nitrogen catabolite repression in Saccharomyces cerevisiae? J Bacteriol 155: 623627.
  • Costanzo MC, Crawford ME, Hirschman JE et al. (2001) YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res 29: 7579.
  • Crespo JL & Hall MN (2002) Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66: 579591.
  • Crespo JL, Powers T, Fowler B & Hall MN (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci USA 99: 67846789.
  • Crespo JL, Helliwell SB, Wiederkehr C, Demougin P, Fowler B, Primig M & Hall MN (2004) NPR1 kinase and RSP5-BUL1/2 ubiquitin ligase control GLN3-dependent transcription in Saccharomyces cerevisiae. J Biol Chem 279: 3751237517.
  • Cunningham TS & Cooper TG (1991) Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. Mol Cell Biol 11: 62056215.
  • Cunningham TS, Svetlov VV, Rai R, Smart W & Cooper TG (1996) G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae. J Bacteriol 178: 34703479.
  • Daran-Lapujade P, Daran JM, Kötter P, Petit T, Piper MDW & Pronk JT (2003) Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res 4: 285296.
  • Daran-Lapujade P, Jansen ML, Daran JM, Van Gulik W, De Winde JH & Pronk JT (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae, a chemostat culture study. J Biol Chem 279: 91259138.
  • Dilova I, Aronova S, Chen JC & Powers T (2004) Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes. J Biol Chem 279: 4652746535.
  • Eckert-Boulet N, Regenberg B & Nielsen J (2005) Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae. Curr Gene 47: 139149.
  • Ehrlich F (1907) Uber die Bedingungen der Fuselolbildung and uber ihren Zusammenhang mit dem Eiweissaufbau der Hefe. Ber Deut Chem Gesellsch 40: 10271047.
  • Ertugay N & Hamamci H (1997) Continuous cultivation of bakers' yeast: change in cell composition at different dilution rates and effect of heat stress on trehalose level. Folia Microbiol (Praha) 42: 463467.
  • Ferea TL, Botstein D, Brown PO & Rosenzweig RF (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci USA 96: 97219726.
  • Forsberg H, Gilstring CF, Zargari A, Martinez P & Ljungdahl PO (2001) The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Mol Microbiol 42: 215228.
  • Friden P & Schimmel P (1987) LEU3 of Saccharomyces cerevisiae encodes a factor for control of RNA levels of a group of leucine-specific genes. Mol Cell Biol 7: 27082717.
  • Harbison CT, Gordon DB, Lee TI et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99104.
  • Hazelwood LA, Tai SL, Boer VM, De Winde JH, Pronk JT & Daran JM (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6: 937945.
  • Henschke PA & Jiranek V (1993) metabolism of nitrogen compounds. Wine Microbiology and Biotechnology (FleetGH, ed), pp. 77164. Harwood Academic Publishers, Chur, Switzerland.
  • Hernandez-Orte P, Cacho JF & Ferreira V (2002) Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. J Agric Food Chem 50: 28912899.
  • Hinnebusch AG (1992) General and pathway specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae. The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression, (Jones EW, Pringle JR & Broach JR, eds). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12: 3573.
  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS & O'Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425: 686691.
  • Iraqui I, Vissers S, Andre B & Urrestarazu A (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19: 33603371.
  • Jansen ML, Daran-Lapujade P, De Winde JH, Piper MD & Pronk JT (2004) Prolonged maltose-limited cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity. Appl Environ Microbiol 70: 19561963.
  • Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR & Tyers M (2004) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18: 24912505.
  • Kim KW, Kamerud JQ, Livingston DM & Roon RJ (1988) Asparaginase II of Saccharomyces cerevisiae. Characterization of the ASP3 gene. J Biol Chem 263: 1194811953.
  • Kohlhaw GB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67: 115.
  • Kulkarni AA, Abul-Hamd AT, Rai R, El Berry H & Cooper TG (2001) Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem 276: 3213632144.
  • Large PJ (1986) Degradation of organic nitrogen compounds by yeasts. Yeast 2: 134.
  • Liu Z & Butow RA (1999) A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 19: 67206728.
  • Liu Z & Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40: 159185.
  • Luttik MA, Overkamp KM, Kotter P, De Vries S, Van Dijken JP & Pronk JT (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273: 2452924534.
  • Magasanik B & Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290: 118.
  • Marguet D, Guo XJ & Lauquin GJ (1988) Yeast gene SRP1 (serine-rich protein). Intragenic repeat structure and identification of a family of SRP1-related DNA sequences. J Mol Biol 202: 455470.
  • Marks VD, Van Der Merwe GK & Van Vuuren HJJ (2003) Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res 3: 269287.
  • Mauricio JC, Valero E, Millan C & Ortega JM (2001) Changes in nitrogen compounds in must and wine during fermentation and biological aging by flor yeasts. J Agric Food Chem 49: 33103315.
  • Messenguy F & Cooper TG (1977) Evidence that specific and ‘general’ control of ornithine carbamoyltransferase production occurs at the level of transcription in Saccharomyces cerevisiae. J Bacteriol 130: 12531261.
  • Nelissen B, De Wachter R & Goffeau A (1997) Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev 21: 113134.
  • Ng R & Abelson J (1980) Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 77: 39123916.
  • Nomura M & Takagi H (2004) Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc Natl Acad Sci USA 101: 1261612621.
  • Piper MD, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J & Pronk JT (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277: 3700137008.
  • Postma E, Verduyn C, Scheffers WA & Van Dijken JP (1989) Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55: 468477.
  • Powers T & Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10: 9871000.
  • Regenberg B, During-Olsen L, Kielland-Brandt MC & Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36: 317328.
  • Regenberg B, Grotkjaer T, Winther O, Fausboll A, Akesson M, Bro C, Hansen LK, Brunak S & Nielsen J (2006) Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 7: R107, doi: DOI: 10.1186/gb-2006-7-11-r107.
  • Reihl P & Stolz J (2005) The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae. J Biol Chem 280: 3980939817.
  • Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N & Grunstein M (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109: 437446.
  • Rossignol T, Dulau L, Julien A & Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20: 13691385.
  • Saldanha AJ, Brauer MJ & Botstein D (2004) Nutritional homeostasis in batch and steady-state culture of yeast. Mol Biol Cell 15: 40894104.
  • Schmelzle T & Hall MN (2000) TOR, a central controller of cell growth. Cell 103: 253262.
  • Shamji AF, Kuruvilla FG & Schreiber SL (2000) Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr Biol 10: 15741581.
  • Sinclair K, Warner JP & Bonthron DT (1994) The ASP1 gene of Saccharomyces cerevisiae, encoding the intracellular isozyme of l-asparaginase. Gene 144: 3743.
  • Stanbrough M & Magasanik B (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J Bacteriol 177: 94102.
  • Stanbrough M, Rowen DW & Magasanik B (1995) Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci USA 92: 94509454.
  • Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, De Winde JH, Daran JM & Pronk JT (2005) Two-dimensional transcriptome analysis in chemostat cultures: combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280: 437447.
  • Ter Linde JJ, Liang H, Davis RW, Steensma HY, Van Dijken JP & Pronk JT (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181: 74097413.
  • Ter Schure EG, Sillje HH, Verkleij AJ, Boonstra J & Verrips CT (1995) The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 177: 66716675.
  • Ter Schure EG, Sillje HH, Vermeulen EE, Kalhorn JW, Verkleij AJ, Boonstra J & Verrips CT (1998) Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 144: 14511462.
  • Tewari YB, Nand K, Goldberg RN & Luong TN (1998) An equilibrium and calorimetric study of some transamination reactions. J Chem Thermodynamics 30: 777793.
  • Thomas D & Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61: 503532.
  • Thomas G & Hall MN (1997) TOR signalling and control of cell growth. Curr Opin Cell Biol 9: 782787.
  • Tusher VG, Tibshirani R & Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 51165121.
  • Usaite R, Patil KR, Grotkjaer T, Nielsen J & Regenberg B (2006) Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, l-alanine, or l-glutamine limitation. Appl Environ Microbiol 72: 61946203.
  • Van Den Berg MA, Jong-Gubbels P, Kortland CJ, Van Dijken JP, Pronk JT & Steensma HY (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271: 2895328959.
  • Van Dijken JP, Bauer J, Brambilla L et al. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26: 706714.
  • Van Maris AJ, Bakker BM, Brandt M, Boorsma A, Teixeira de Mattos MJ, Grivell LA, Pronk JT & Blom J (2001) Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. FEMS Yeast Res 1: 139149.
  • Verduyn C, Postma E, Scheffers WA & Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501517.
  • Viswanathan M, Muthukumar G, Cong YS & Lenard J (1994) Seripauperins of Saccharomyces cerevisiae: a new multigene family encoding serine-poor relatives of serine-rich proteins. Gene 148: 149153.
  • Vuralhan Z, Luttik MA & Tai SL (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71: 32763284.
  • Vuralhan Z, Morais MA, Tai SL, Piper MD & Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69: 45344541.
  • Watson TG (1976) Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source. J Gen Microbiol 96: 263268.
  • Wenzel TJ, Teunissen AW & De Steensma HY (1995) PDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res 23: 883884.
  • Wu J, Zhang N, Hayes A, Panoutsopoulou K & Oliver SG (2004) Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proc Natl Acad Sci USA 101: 31483153.