SEARCH

SEARCH BY CITATION

References

  • Bahn Y-S & Sundstrom P (2001) CAP1 an adenylate cyclase-associated protein gene, regulates bud hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J Bacteriol 183: 32113223.
  • Bahn Y-S, Staab J & Sundstrom P (2003) Increased high-affinity phosphodiesterase PDE2 gene expression in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production and promotes virulence of Candida albicans. Mol Microbiol 50: 391409.
  • Bernstein BE, Tong JK & Schreiber SL (2000) Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci USA 97: 1370813713.
  • Bockmühl DP & Ernst JF (2001) A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candidaalbicans. Genetics 157: 15231530.
  • Borges-Walmsley MI & Walmsley AR (2000) cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol 8: 133141.
  • Buurman ET, Westwater C, Hube B, Brown AJ, Odds FC & Gow NA (1998) Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of Candida albicans. Proc Natl Acad Sci USA 95: 76707675.
  • Calderone RA & Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9: 327335.
  • Calderone RA, Suzuki S, Cannon R et al. (2000) Candida albicans: adherence, signaling and virulence. Med Mycol 38 (Suppl. 1): 125137.
  • Chattaway FW, Wheeler PR & O'Reilly J (1981) Involvement of adenosine-cyclic monophosphate in the germination of blastospores of Candida albicans. J Gen Microbiol 123: 233240.
  • Cutler JE (1991) Putative virulence factors of Candida albicans. Annu Rev Microbiol 45: 187281, 318.
  • De Bernardis F, Muhlschlegel FA, Cassone A & Fonzi WA (1998) The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun 66: 33173325.
  • De Groot PW, De Boer AD, Cunningham J, Dekker HL, De Jong L, Hellingwerf KJ, De Koster C & Klis FM (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryotic Cell 3: 955965.
  • Dupont PF (1995) Candida albicans the opportunist, a cellular and molecular perspective. J Am Pediatr Med Assoc 85: 104115.
  • Fridkin S & Jarvis WR (1996) Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 9: 499511.
  • Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, Filler SG & Edwards JE Jr (2002) Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 44: 6172.
  • Grozinger CM & Schreiber SL (2002) Deacetylase enzymes: biological functions and the use of small molecule inhibitors. Chem Biol 9: 316.
  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349352.
  • Kao C-F & Osley MA (2003) In vivo assays to study histone ubiquitylation. Methods 31: 5966.
  • Kelly MT, MacCallum DM, Clancy SD, Odds FC, Brown AJ & Butler G (2004) The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 53: 969983.
  • Kimura LH & Pearsall NN (1980) Relationship between germination of Candida albicans and increased adherence to human buccal epithelial cells. Infect Immun 28: 464468.
  • Klar AJS, Srikantha T & Soll DR (2001) A histone deacetylation inhibitor and mutant promote colony type switching of the human pathogen Candida albicans. Genetics 158: 919924.
  • Klengel T, Liang WJ, Chaloupka J et al. (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15: 20212026.
  • Kurdistani SK & Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4: 276284.
  • Li F & Palecek P (2003) EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryotic Cell 2,6: 12661273.
  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A & Fink GR (1997) Nonfilamentous Candida albicans mutants are avirulent. Cell 90: 939949.
  • Mai A, Esposito M, Sbardella G & Massa S (2001) A new facile and expeditious synthesis of N-hydroxy-N′- phenyloctanediamide, a potent inducer of terminal cytodifferentiation. Org Prep Proced Int 33: 391394.
  • Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S & Ragno R (2005a) Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 25: 261309.
  • Mai A, Massa S, Rotili D, Pezzi R, Bottoni P, Scatena R, Meraner J & Brosch G (2005b) Exploring the connection unit in the HDAC inhibitor pharmacophore model: novel uracil-based hydroxamates. Bioorg Med Chem Lett 15: 46564661.
  • Mai A, Massa S, Rotili D, Simeoni S, Ragno R, Botta G, Nebbioso A, Miceli M, Altucci L & Brosch G (2006) Synthesis and biological properties of novel, uracil-containing histone deacetylase inhibitors. J Med Chem 49: 60466056.
  • Mai A, Rotili D, Massa S, Brosch G, Simonetti G, Passariello C & Palamara AT (2007) Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans. Bioorg Med Chem Lett 17: 12211225.
  • Marks PA, Rifkind RA & Richon VM (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1: 194202.
  • Munro CA, Schofield DA, Gooday GW & Gow NA (1998) Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiology 144: 391401.
  • National Committee for Clinical Laboratory Standards (2002). Reference method for broth diluition antifungal susceptibility testing of yeasts; approved standard – second edition. Document M27-A2 National Committee for Clinical Laboratory Standards, Wayne, PA.
  • Niimi M, Niimi K, Tokunaga J & Nakayama H (1980) Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans. J Bacteriol 142: 10101014.
  • Perez-Martin J, Uria JA & Johnson AD (1999) Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 18: 25802592.
  • Quivy V & Van Lint C (2004) Regulation at multiple levels of NF-kB-mediated transactivation by protein acetylation. Biochem Pharmacol 68: 12211229.
  • Saville SP, Lazzell AL, Bryant AP, Fretzen A, Monreal A, Solberg EO, Monteagudo C, Lopez-Ribot JL & Milne GT (2006) Inhibition of filamentation can be used to treat disseminated candidiasis. Antimicrob Agents Chemother 50: 33123316.
  • Schmitt ME, Brown TA & Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acid Res 18: 30913092.
  • Shepherd MG, Poulter RTM & Sullivan PA (1985) Candida albicans: Biology, genetics, and pathogenicity. Annu Rev Microbiol 36: 579614.
  • Singh V, Sinha I & Sadhale PP (2005) Global analysis of altered gene expression during morphogenesis of Candida albicans in vitro. Biochem Biophys Res Comm 334: 11491158.
  • Smith WL & Edlind TD (2002) Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother 46: 35323539.
  • Srikantha T, Tsai L, Daniels K, Klar AJ & Soll DR (2001) The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol 183: 46144625.
  • Sterner DE & Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435459.
  • Stoldt VR, Sonneborn A, Leuker CE & Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16: 19821991.
  • Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4: 461469.
  • Zelada A, Castilla R, Passeron S & Cantore ML (1996) Reassessment of the effect of glucagon and nucleotides on Candida albicans germ tube formation. Cell Mol Biol 42: 567576.