SEARCH

SEARCH BY CITATION

References

  • Aguilera A & Benítez T (1985) Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Arch Microbiol 142: 389392.
  • Albertini M, Girzalsky W, Veenhuis M & Kunau WH (2001) Pex12p of Saccharomyces cerevisiae is a component of a multi-protein complex essential for peroxisomal matrix protein import. Eur J Cell Biol 80: 257270.
  • Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M & McEachern MJ (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. P Natl Acad Sci USA 101: 86588663.
  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker's yeast. Nat Biotechnol 15: 13511357.
  • Ball SG, Wickner RB, Cottarel G, Schaus M & Tirtiaux C (1986) Molecular cloning and characterization of ARO7-OSM2, a single yeast gene necessary for chorismate mutase activity and growth in hypertonic medium. Mol Gen Genet 205: 326330.
  • Bellí G, Garí E, Aldea M & Herrero E (2001) Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol Microbiol 39: 10221035.
  • Birschmann I, Rosenkranz K, Erdmann R & Kunau WH (2005) Structural and functional analysis of the interaction of the AAA-peroxins Pex1p and Pex6p. FEBS J 272: 4758.
  • Bowers K & Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744: 438454.
  • Breitling R, Sharif O, Hartman ML & Krisans SK (2002) Loss of compartmentalization causes misregulation of lysine biosynthesis in peroxisome-deficient yeast cells. Eukaryot Cell 1: 978986.
  • Brocard C, Lametschwandtner G, Koudelka R & Hartig A (1997) Pex14p is a member of the protein linkage map of Pex5p. EMBO J 16: 54915500.
  • Brown LA & Baker A (2003) Peroxisome biogenesis and the role of protein import. J Cell Mol Med 7: 388400.
  • Butcher RA & Schreiber SL (2004) Identification of Ald6p as the target of a class of small-molecule suppressors of FK506 and their use in network dissection. Proc Natl Acad Sci USA 101: 78687873.
  • Clotet J, Escoté X, Adrover MA, Yaakov G, Garí E, Aldea M, De Nadal E & Posas F (2006) Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 25: 23382346.
  • Corbacho I, Olivero I & Hernández LM (2005) A genome-wide screen for Saccharomyces cerevisiae nonessential genes involved in mannosyl phosphate transfer to mannoprotein-linked oligosaccharides. Fungal Genet Biol 42: 773790.
  • Del Castillo Agudo L (1992) Lipid content of Saccharomyces cerevisiae strains with different degrees of ethanol tolerance. Appl Microbiol Biotechnol 37: 647651.
  • Erdmann R, Veenhuis M, Mertens D & Kunau WH (1989) Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. P Natl Acad Sci USA 86: 54195423.
  • Escoté X, Zapater M, Clotet J & Posas F (2004) Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat Cell Biol 6: 9971002.
  • Fernandez-Ricaud L, Warringer J, Ericson E, Pylvänäinen I, Kemp GJ, Nerman O & Blomberg A (2005) PROPHECY – a database for high-resolution phenomics. Nucleic Acids Res 33: D369D373.
  • Forment J, Mulet JM, Vicente O & Serrano R (2002) The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter. Biochim Biophys Acta 1565: 3640.
  • Fujita K, Matsuyama A, Kobayashi Y & Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6: 744750.
  • Gao XD, Wang J, Keppler-Ross S & Dean N (2005) ERS1 encodes a functional homologue of the human lysosomal cystine transporter. FEBS J 272: 24972511.
  • Gibson BR, Lawrence SJ, Leclaire JP, Powell CD & Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31: 535569.
  • Gietz RD & Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 8796.
  • González A, Larroy C, Biosca JA & Ariño J (2007) Use of the TRP1 auxotrophic marker for gene disruption and phenotypic analysis in yeast: a note of warning. FEMS Yeast Res 8: 25.
  • Hettema EH, Girzalsky W, Van Den Berg M, Erdmann R & Distel B (2000) Saccharomyces cerevisiae pex3p and pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J 19: 223233.
  • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H & Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131: 3444.
  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66: 300372.
  • Huhse B, Rehling P, Albertini M, Blank L, Meller K & Kunau WH (1998) Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J Cell Biol 140: 4960.
  • Izawa S, Kita T, Ikeda K, Miki T & Inoue Y (2007) Formation of cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making. Biosci Biotechnol Biochem 71: 28002807.
  • Jiménez J & Benítez T (1988) Yeast cell viability under conditions of high temperature and ethanol concentrations depends on the mitochondrial genome. Curr Genet 13: 461469.
  • Koller A, Snyder WB, Faber KN, Wenzel TJ, Rangell L, Keller GA & Subramani S (1999) Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J Cell Biol 146: 99112.
  • Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Iefuji H & Hirata D (2004) Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem 68: 968972.
  • Lamb DC, Kelly DE, Manning NJ, Kaderbhai MA & Kelly SL (1999) Biodiversity of the P450 catalytic cycle: yeast cytochrome b5/NADH cytochrome b5 reductase complex efficiently drives the entire sterol 14-demethylation (CYP51) reaction. FEBS Lett 462: 283288.
  • Lucchini G, Biraghi A, Carbone ML, De Scrilli A & Magni GE (1978) Effect of mutation in the aromatic amino acid pathway on sporulation of Saccharomyces cerevisiae. J Bacteriol 136: 5562.
  • Lucero P, Peñalver E, Moreno E & Lagunas R (2000) Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae. Appl Environ Microbiol 66: 44564461.
  • Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134: 121127.
  • Rehling P, Skaletz-Rorowski A, Girzalsky W, Voorn-Brouwer T, Franse MM, Distel B, Veenhuis M, Kunau WH & Erdmann R (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J Biol Chem 275: 35933602.
  • Robertson LS & Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. P Natl Acad Sci USA 95: 1378313787.
  • Rosa MF & Sá-Correia I (1996) Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. FEMS Microbiol Lett 135: 271274.
  • Ruepp A, Zollner A, Maier D et al. (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32: 55395545.
  • Scherens B & Goffeau A (2004) The uses of genome-wide yeast mutant collections. Genome Biol 5: 229.
  • Sekine T, Kawaguchi A, Hamano Y & Takagi H (2007) Desensitization of feedback inhibition of the Saccharomyces cerevisiae gamma-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 73: 40114019.
  • Takagi H, Takaoka M, Kawaguchi A & Kubo Y (2005) Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71: 86568662.
  • Takemura R, Inoue Y & Izawa S (2004) Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock. J Cell Sci 117: 41894197.
  • Van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC & Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23: 351359.
  • Warringer J, Ericson E, Fernandez L, Nerman O & Blomberg A (2003) High-resolution yeast phenomics resolves different physiological features in the saline response. Proc Natl Acad Sci USA 100: 1572415729.
  • Winzeler EA, Shoemaker DD, Astromoff A et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901906.
  • You KM, Rosenfield CL & Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69: 14991503.