• Open Access

Uptake of radiolabeled GlcNAc into Saccharomyces cerevisiae via native hexose transporters and its in vivo incorporation into GPI precursors in cells expressing heterologous GlcNAc kinase

Authors


Correspondence: Christopher H. Taron, New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA. Tel.: +1 978 927 5054; fax: +1 978 921 1350; e-mail: taron@neb.com

Abstract

Yeast glycan biosynthetic pathways are commonly studied through metabolic incorporation of an exogenous radiolabeled compound into a target glycan. In Saccharomyces cerevisiae glycosylphosphatidylinositol (GPI) biosynthesis, [3H]inositol has been widely used to identify intermediates that accumulate in conditional GPI synthesis mutants. However, this approach also labels non-GPI lipid species that overwhelm detection of early GPI intermediates during chromatography. In this study, we show that despite lacking the ability to metabolize N-acetylglucosamine (GlcNAc), S. cerevisiae is capable of importing low levels of extracellular GlcNAc via almost all members of the hexose transporter family. Furthermore, expression of a heterologous GlcNAc kinase gene permits efficient incorporation of exogenous [14C]GlcNAc into nascent GPI structures in vivo, dramatically lowering the background signal from non-GPI lipids. Utilizing this new method with several conditional GPI biosynthesis mutants, we observed and characterized novel accumulating lipids that were not previously visible using [3H]inositol labeling. Chemical and enzymatic treatments of these lipids indicated that each is a GPI intermediate likely having one to three mannoses and lacking ethanolamine phosphate (Etn-P) side-branches. Our data support a model of yeast GPI synthesis that bifurcates after the addition of the first mannose and that includes a novel branch that produces GPI species lacking Etn-P side-branches.

Ancillary