SEARCH

SEARCH BY CITATION

References

  • Alonso JM, Hirayama T, Roman G, Nourizadehm S & Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 21482152.
  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology 44: 429442.
  • Argandona VH, Chaman M, Cardemil L, Munoz O, Zuniga GE & Corcuera LJ (2001) Ethylene production and peroxidase activity in aphid-infested barley. Journal of Chemical Ecology 27: 5368.
  • Audenaert K, De Meyer GB & Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiology 128: 491501.
  • Aviv DH, Rusterucci C, Holt BF 3rd, Dietrich RA, Parker JE & Dangl JL (2002) Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR-dependent. Plant Journal 29: 381391.
  • Baumann L & Baumann P (1995) Soluble salivary proteins secreted by Schizaphis graminum. Entomologia Experimentalis et Applicata 77: 5660.
  • Bergvinson DJ, Arnason JT & Pietrzak LN (1994) Localization and quantification of cell wall phenolics in European corn borer resistant and susceptible maize inbreds. Canadian Journal of Botany 72: 12431249.
  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ et al. (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences USA 97: 93299334.
  • Bostock RM (1999) Signal conflicts and synergies in induced resistance to multiple attackers. Physiology and Molecular Plant Pathology 55: 99109.
  • Botha AM, Lacock L, Van Niekerk C, Matsioloko MT, De Preez FB et al. (2003) Gene expression profiling during Diuraphis noxia infestation of Triticum aestivum cv. ‘Tugela DN’ using microarrays. Proceedings of 10th International Wheat Genetic Symposium, September 1–6, 2003, Paestum, Italy, vol. 1, pp. 334338. Istituto Sperimentale Per la Cerealicoltura, Rome, Italy.
  • Botha AM, Lacock L, Van Niekerk C, Matsioloko MT, Du Preez FB et al. (2006) Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. ‘TugelaDN’ a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)? Plant Cell Reports 25: 4154.
  • Botha AM, Nagel MAC, Van der Westhuizen AJ & Botha FC (1998) Chitinase isoenzymes in near-isogenic wheat lines challenged with Russian wheat aphid, exogenous ethylene and mechanical wounding. Botanical Bulletin of Academia Sinica 39: 99106.
  • Boyko EV, Smith CM, Thara VK, Bruno JM, Deng Y et al. (2006) The molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pti-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae). Journal of Economic Entomology 99: 14301445.
  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S et al. (2002) Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes and Development 16: 490502.
  • Brotman Y, Silberstein L, Kovalski I, Perin C, Dogimont C et al. (2002) Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance. Theoretical and Applied Genetics 104: 10551063.
  • Casaretto JA & Corcuera LJ (1998) Proteinase inhibitor accumulation in aphid-infested barley leaves. Phytochemistry 49: 22792286.
  • Chaman ME, Corcuera LJ, Zuniga GE, Cardemil L & Argandona VH (2001) Induction of soluble and cell wall peroxidases by aphid infestation in barley. Journal of Agricultural and Food Chemistry 49: 22492253.
  • Ciepiela A (1989) Biochemical basis of winter wheat resistance to the grain aphid, Sitobion avenae. Entomologia Experimentalis et Applicata 51: 269275.
  • Creelman RA & Mullet JE (1997) Biosysnthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology 48: 355381.
  • Devonshire AL & Field LM (1991) Gene amplification and insecticide resistance. Annual Review of Entomology 36: 123.
  • Divol F, Vilaine F, Thibivilliers S, Amselem J, Palauqui JC et al. (2005) Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Molecular Biology 57: 517540.
  • Dong H-P, Peng J, Bao Z, Meng X, Bonasera JM et al. (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiology 136: 36283638.
  • Ellis C, Karafyllidis I & Turner JG (2002) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphae cichoracearum. Pseudomonas syringae, and Myzus persicae. Molecular Plant–Microbe Interactions 15: 10251030.
  • Fidantsef AL, Stout MJ, Thaler JS, Duffey SS & Bostock RM (1999) Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiology and Molecular Plant Pathology 54: 97114.
  • Forslund K, Pettersson J, Bryngelsson T & Jonsson L (2000) Aphid infestation induces PR proteins differentially in barley susceptible or resistant to the bird cherry-oat aphid. Physiologia Plantarum 110: 496502.
  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist 156: 145169.
  • Hardie JR, Issacs R, Pickett JA, Wadhams LJ & Woodcock CM (1994) Methyl salicylate and (-)-(1R, 5S)-myrtenal are plant-derived repellents from the black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). Journal of Chemical Ecology 20: 28472855.
  • Havlickova H, Cvikrova M & Eder J (1996) Phenolic acids in wheat cultivars in relation to plant suitability for and response to cereal aphids. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 103: 535542.
  • Havlickova H, Cvikrova M, Eder J & Hrubcova M (1998) Alterations on the levels of phenolics and peroxidases activities induced by Rhopalosiphum padi (L.) in two winter wheat cultivars. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 105: 140148.
  • Hays DB, Porter DR, Webster JA & Carver BF (1999) Feeding behavior of biotypes E and H greenbug (Homoptera: Aphididae) on previously infested near-isolines of barely. Journal of Economic Entomology 92: 12231229.
  • Heil M & Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Annals of Botany 89: 503512.
  • Hori K (1976) Plant growth-regulating factor in the salivary gland of several heteropterous insects. Comparative Biochemistry and Physiology 53B: 435438.
  • Hwang CF, Bhakta AV, Truesdell GM, Pudlo WM & Williamson VM (2000) Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell 12: 13191329.
  • Jones RL (1971) Gibberellic acid-enhanced release of β-1,3-glucanase from barley aleurone cells. Plant Physiology 47: 412416.
  • Kaloshian I (2004) Gene-for-gene disease resistance: bridging insect pest and pathogen defense. Journal of Chemical Ecology 30: 24192438.
  • Kaloshian I, Kinser MG, Ullman DE & Willamson VM (1997) The impact of Meu1-mediated resistance in tomato on longevity, fecundity, and behavior of the potato aphid, Macrosiphum euphorbiae. Entomologia Experimentalis et Applicata 83: 181187.
  • Karban R & Baldwin IT (1997) Induced Responses to Herbivory. University of Chicago Press, Chicago, IL, USA.
  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports 21: 829837.
  • Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. Journal of Experimental Botany 57: 767774.
  • Kessler A & Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Physiology 53: 299328.
  • Kfoury L & Masonie G (1995) Characteristics of the resistance of the peach cultivar Rubira to Myzus persicae Sulzer. Agronomie 15: 277284.
  • Klingler J, Creasy R, Gao L, Nair RM, Calix AS et al. (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiology 137: 14451455.
  • Klingler J, Powell G, Thompson GA & Isaacs R (1998) Phloem specific aphid resistance in Cucumis melo line AR 5: effects on feeding behaviour and performance of Aphis gossypii. Entomologia Experimentalis et Applicata 86: 7988.
  • Krishnaveni S, Muthukrishnan S, Liang G, Wilde G & Manickam A (1999) Induction of chitinases and beta-1,3-glucanases in resistant and susceptible cultivars of sorghum in response to insect attack, fungal infection and wounding. Plant Science 144: 916.
  • Lacock L & Botha A-M (2003) Suppression subtractive hybridization (SSH) employed to investigate gene expression after Russian wheat aphid infestation. Proceedings of the 10th International Wheat Genetics Symposium, September 1–6, 2003, Paestum, Italy, vol. 3, pp. 11871189. Istituto Sperimentale Per la Cerealicoltura, Rome, Italy.
  • Lacock L, Van Niekerk C, Loots S, Du Preez F & Botha A-M (2003) Functional and comparative analysis of expressed sequences from Diuraphis noxia infested wheat obtained utilizing the conserved Nucleotide Binding Site. African Journal of Biotechnology 2: 7581.
  • Lagudah ES, Moullet O & Appels R (1997) Map-based cloning of a gene sequence encoding a nucleotide binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40: 659665.
  • Lee JE, Vogt T, Hause B & Lëbler M (1997) Methyl jasmonate induces an O-methyltransferase in barley. Plant Cell Physiology 38: 851862.
  • Leszczynski B (1985) Changes in phenols content and metabolism in leaves of susceptible and resistant winter wheat cultivars infested by Rhopalosiphum padi (L.) (Hom., Aphididae). Zeitschrift für Angewandte Entomologie 100: 343348.
  • Li J, Brader G & Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate mediated signals in plant defense. Plant Cell 16: 319331.
  • Liu XM, Smith CM & Gill BS (2002) Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theoretical and Applied Genetics 104: 10421048.
  • Liu XM, Smith CM & Gill BS (2005) Allelic relationships among Russian wheat aphid resistance genes. Crop Science 45: 22732280.
  • Liu XM, Smith CM, Gill BS & Tolmay V (2001) Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theoretical and Applied Genetics 102: 504510.
  • Martin GB, Bogdanove AJ & Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology 54: 2361.
  • Martinez de Ilarduya O, Xie QG & Kaloshian I (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Molecular Plant Microbe Interactions 16: 699708.
  • Mewis I, Appel HM, Hom A, Raina R & Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiology 138: 11491162.
  • Miles PW (1999) Aphid saliva. Biological Review 74: 4185.
  • Miller HL, Neese PA, Ketring DL & Dillwith JW (1994) Involvement of ethylene in aphid infestation of barley. Journal of Plant Growth Regulation 13: 167171.
  • Milligan S, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P & Williamson V (1998) The root-knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10: 13071319.
  • Moran PJ, Cheng Y, Cassell JL & Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant–aphid interactions. Archives of Insect Biochemistry and Physiology 51: 182203.
  • Moran PJ & Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology 125: 10741085.
  • Ni X, Quisenberry SS, Heng-Moss T, Markwell J, Sarath G et al. (2001) Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. Journal of Economic Entomology 94: 743751.
  • Van Niekerk C & Botha A-M (2003) Using Suppression subtractive hybridisation (SSH) to screen for novel sequences expressed in response to Russian wheat aphid feeding. Proceedings of the 10th International Wheat Genetics Symposium, September 1–6, 2003, Paestum, Italy, vol. 3, pp. 12811283. Istituto Sperimentale Per la Cerealicoltura, Rome, Italy.
  • Nieto-Lopez RM & Blake TK (1994) Russian wheat aphid resistance in barley: Inheritance and linked molecular markers. Crop Science 34: 655659.
  • Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I et al. (2001) Molecular-genetic characterization of a new nematode resistance gene in wheat. Theoretical and Applied Genetics 102: 623629.
  • Orozco-Cardenas M & Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences USA 96: 65536557.
  • Painter RH (1951) Insect Resistance in Crop Plants. University of Kansas Press, Lawrence, KS, USA.
  • Pan Q, Wendel J & Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. Journal of Molecular Evolution 50: 203213.
  • Panda N & Kush GS (1995) Host Plant Resistance to Insects. CAB/International Rice Research Institute, Wallingford, Oxford, UK.
  • Park S-J, Huang Y & Ayoubi P (2005) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223: 932947.
  • Pettersson J, Pickett JA, Pye BJ, Quiroz A, Smart LE et al. (1994) Winter host component reduces colonization by bird-cherry-oat aphid Rhopalosiphum padi (L.) (Homoptera, Aphididae) and other aphids in cereal fields. Journal of Chemical Ecology 20: 25652574.
  • Pieterse CMJ & Van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends in Plant Science 4: 5258.
  • Pitrat M & Lecoq H (1980) Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathology 70: 958961.
  • Pollard DG (1972) Plant penetration by feeding aphids (Hemiptera, Aphidoidea): a review. Bulletin of Entomological Research 62: 631714.
  • Ponder KL, Pritchard J, Harrington R & Bale JS (2001) Feeding behavior of the aphid Rhopalosiphum padi (Hemiptera, Aphididae) on nitrogen and water-stressed barley (Hordeum vulgare) seedlings. Bulletin of Entomological Research 91: 125130.
  • Prado E & Tjallingii WF (1997) Effects of previous plant infestation on sieve element acceptance by two aphids. Entomologia Experimentalis et Applicata 82: 189200.
  • Qubbaj T, Reineke A & Zebitz CPW (2005) Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica. Entomologia Experimentalis et Applicata 115: 145152.
  • Rahbe Y, Deraison C, Bonade-Bottino M et al. (2003a) Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Science 164: 441450.
  • Rahbé Y, Ferrasson E, Rabesona H & Quillien L (2003b) Toxicity to the pea aphid Acyrthosiphon pisum of anti-chymotrypsin isoforms and fragments of Bowman-Birk protease inhibitors from pea seeds. Insect Biochemistry and Molecular Biology 33: 299306.
  • Reymond P & Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Current Opinions in Plant Biology 1: 404411.
  • Rooney HCE, Van't Klooster JW, Van Der Hoorn RAL, Joosten MHAJ, Jones JDG & De Wit PJGM (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308: 17831786.
  • Rossi M, Goggin FL, Milligan SB, Klaoshian I, Ullman DE & Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences USA 95: 97509754.
  • Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ et al. (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiology 138: 352368.
  • Sauge M-H, Lacroze J-P, Poessël J-L, Pascal T & Kervella J (2002) Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomologia Experimentalis et Applicata 102: 2937.
  • Seah S, Sivasithamparam K, Karalousis A & Lagudah ES (1998) Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theoretical and Applied Genetics 97: 937945.
  • Seigler D (1998) Plant Secondary Metabolism. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Smith CM (2005) Plant Resistance to Arthropods – Molecular and Conventional Approaches. Springer, Berlin, Germany.
  • Smith CM, Quisenberry SS & Du Toit F (1999) The value of conserved wheat germplasm possessing arthropod resistance. Global Plant Genetic Resources for Insect Resistant Crops (ed. by SLClement & SSQuisenberry), pp. 2549. CRC Press, Boca Raton, FL, USA.
  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA et al. (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760770.
  • Stotz HU, Koch T, Biedermann A, Weniger K, Boland W & Mitchell-Olds T (2002) Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta 214: 648652.
  • Stotz HU, Kroymann J & Mitchell-Olds T (1999) Plant–insect interactions. Current Opinions in Plant Biology 2: 268272.
  • Stout MJ, Fidantsef AL, Duffey SS & Bostock RM (1999) Signal interactions in pathogen and insect attack: systemic plant–mediated interactions between pathogens and herbivores of the tomato, Lycopsericon esculentum. Physiological and Molecular Plant Pathology 54: 115130.
  • Swanepoel E, Laycock L, Myburg AA & Botha A-M (2003) A leucine rich homolog to Aegilops tauschii from breadwheat line PI137739 obtained by suppression subtractive hybridization shows linkage to Russian wheat aphid resistance gene Dn1. Proceedings of 10th International Wheat Genetic Symposium, September 1–6, 2003, Paestum, Italy, vol. 3, pp. 12631265. Istituto Sperimentale Per la Cerealicoltura, Rome, Italy.
  • Teetes GL, Peterson GC, Nwanze KF & Pendelton BB (1999) Genetic diversity of sorghum: a source of insect-resistant germplasm. Global Plant Genetic Resources for Insect Resistant Crops (ed. by SLClement & SSQuisenberry), pp. 6385. CRC Press, Boca Raton, FL, USA.
  • Telang A, Sandstrom J, Dyreson E & Moran NA (1999) Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomologia Experimentalis et Applicata 91: 403412.
  • Thompson GA & Goggin FL (2005) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany 57: 755766.
  • Tuomi J (1992) Toward integration of plant defense theories. Trends in Ecology and Evolution 7: 365367.
  • Urbanska A, Turlings TCJ, Tjallingii WF, Dixon AFG & Leszczynski B (1998) Phenol oxidizing enzymes in the grain aphid's saliva. Entomologia Experimentalis et Applicata 86: 197203.
  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F et al. (2001) Hydroperoxyde lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences USA 98: 81398144.
  • Van De Ven WTG, LeVesque CS, Perring TM & Walling LL (2000) Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12: 14091424.
  • Voelckel C, Weisser WW & Baldwin IT (2004) An analysis of plant–aphid interactions by different microarray hybridization strategies. Molecular Ecology 13: 31873195.
  • Walling LL (2000) The myriad plant responses to herbivores. Journal of Plant Growth Regulation 19: 195216.
  • Wang YH, Garvin DF & Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology 127: 345359.
  • Van Der Westhuizen AJ, Qian X-M & Botha A-M (1998a) S-1,3-glucanases in wheat and resistance to the Russian wheat aphid. Physiologia Plantarum 103: 125131.
  • Van Der Westhuizen AJ, Qian X-M & Botha A-M (1998b) Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Reports 18: 132137.
  • Whittaker RH (1970) The biochemical ecology of higher plants. Chemical Ecology (ed. by ESondheimer & JBSimeone), pp. 4370. Academic Press, New York, NY, USA.
  • Wingler A, Brownhill E & Pourtau N (2005) Mechanisms of the light-dependent induction of cell death in tobacco plants with delayed senescence. Journal of Experimental Botany 56: 28972905.
  • Zhu-Salzman K, Salzman RA, Ahn J-E & Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiology 134: 420431.