• 1
    Blake, D.R. and F.S. Rowland (1988) Continuing worldwide increase in troposheric methane, 1978 to 1987. Science, 239, 11291131.
  • 2
    Khalil, M.A.K. and R.A. Rasmussen (1993) Decreasing trend of methane: Unpredictability of future concentrations. Chemosphere, 26, 803814.
  • 3
    Khalil, M.A.K. and R.A. Rasmussen (1994) Global emissions of methane during the last several centuries. Chemosphere, 29, 833842.
  • 4
    Machida, T., T. Nakazawa, M. Tanaka, Y. Fujii, S. Aoki, and O. Watanabe (1994) Atomospheric CH4 and N2O concentrations during the last 250 years deduced from H15 ice core, antarctica. In: Proceedings of the International Symposium on global cycles of atomospheric greenhouse gases eds.), pp. 113–116.
  • 5
    Steel, L.P., P.J. Fraser, R.A. Rasmussen, M.A.K. Khalil, T.J. Conway, R.H. Crawford, R.H. Gammon, K.A. Masarie, and K.W. Thoning (1987) The global distribution of methane in the troposphere. J. Atomos. Chem., 5, 125171.
  • 6
    Tyler, S.C. (1991) The global methane budget. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxide, and Halomethanes (Rogers, J.E. and Whiteman, W.B.s eds.), American Society for Microbiology, Washington D.C.
  • 7
    Zander, R., P.H. Demoulin, D.H. Ehhalt, and U. Schmidt (1989) Secular increase of the vertical columun abundance of methane derived from IR solar spectra recorded at the Jungfraujoch station. J. Geophys. Res., 94, 1102911039.
  • 8
    Banik, A., M. Sen, and S.P. Sen (1985) Methane emission from paddy soils fertilized with cowdung and farmyard manure. Chemosphere, 30, 11931208.
  • 9
    Boone, D.R., W.B. Whitman, and P. Rouviere (1993) Diversity and Taxonomy of methanogens. In: Methanogenesis (Ferry, J.G.s eds.), pp. 35–80. Chapman and Hall Co., New York.
  • 10
    IPCC (1995) Greenhouse Gas Inventory, Working Book. IPCC, London.
  • 11
    Conrad, R., F. Bak, H.J. Seitz, B. Thebrath, H.P. Mayer, and H. Schutz (1989) Hydrogen turnover by psychrotrophic homoacetonenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol., 62.285–294.
  • 12
    Hori, K., K. Inubushi, S. Matsumoto, and K. Wada (1990) Competition for acetic acid between methane formation and sulfate reduction in the paddy soil. Jpn. J. Soil Sci. Plant Nutr., 61, 572578.
  • 13
    Hori, K., K. Inubushi, S. Matsumoto, and H. Wada (1993) Competition for hydrogen between methane formation and sulfate reduction in the paddy soil. Jpn. J. Soil Sci. Plant Nutr., 64, 363367.
  • 14
    Inubushi, K., Y. Muramatsu, and M. Umebayashi (1992) Influence of percolation on methane emission from flooded paddy soil. Jpn. J. Soil Sci. Plant Nutr., 63, 184189.
  • 15
    Inubushi, K., Y. Muramatsu, and M. Umebayashi (1994) Effect of incorporation-timing of rice straw on methane emissions from paddy soil. Jpn. J. Soil Sci. Plant Nutr., 65, 2226.
  • 16
    Itou, J. and K. Iimura (1989) Decomposition of rice straw and evolution of gas at paddy field of Clayey Gley soil in Hokuriku district in Japan. Jpn. J. Soil Sci. Plant Nutr., 60, 290297.
  • 17
    Kimura, M., H. Murakami, and H. Wada (1991) CO2, H2, CH4 production in rice rhizosphere. Soil Sci. Plant Nutr., 37, 5560.
  • 18
    Schuts, H., W. Seiler, and R. Conrad (1989) Process involved in formation and emission of methane in rice paddies. Biochemistry, 7, 3353.
  • 19
    Takai, Y. (1970) The mechanism of methane fermentation in flooded paddy soil. Soil Sci. Plant Nutr., 16, 238244.
  • 20
    Kumagai, K., K. Yagi, H. Tsuruta, and K. Minami (1993) Emmission, changes in production and oxidation of methane from Japanese rice paddy fields. Jpn. J. Soil Sci. Plant Nutr., 64, 368376.
  • 21
    Asakawa, S., M. Akagawa-Matsushita, H. Morii, Y. Koga, and K. Hayano (1995) Characterization of Methanosarcina mazei TMA isolated from a paddy field soil. Curr. Microbiol., 31, 3438.
  • 22
    Asakawa, S., H. Morii, M. Akagawa-Matsushita, Y. Koga, and K. Hayano (1993) Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA–DNA hybridization among M. arboriphilicus strains. Int. J. Syst. Bacteriol., 43, 683686.
  • 23
    Oyaizu, H. (1992) Bacterial identification and flora analysis by 16S rRNA sequencing. In: Biseibutunoseitai (18 eds.), pp. 51–60. Gakkaishuppan Center Co., Tokyo.
  • 24
    Zhu, H., F. Qu, and L.-H. Zhu (1993) Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acid Res., 21, 52795280.
  • 25
    Woese, C.R., O. Kandler, and M.L. Wheelis (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA, 87, 45764579.
  • 26
    Fuhrman, J.A., K. McCallum, and A.A. Davis (1992) Novel major archaebacterial group from marine plankton. Nature, 356, 148149.
  • 27
    Maestrojuan, G.M., D.R. Boone, L. Xun, R.A. Mah, and L. Zhang (1990) Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilium to the genus Methanoculleus gen. nov., emendation of Methanoculleus marisnigri and Methanogenium, and description of new strains of Methanoculleus bourgense and Methanoculleus marisnigri. Int. J. Syst. Bacteriol., 40, 117122.
  • 28
    Xun, L., D.R. Boone, and R.A. Mah (1989) Deoxyribonucleic acid study of Methanogenium and Methanocorpusculum species, emendation of the genus Methanocorpusculum, and transfer of Methanogenium aggregans to the genus Methanocorpusculum, as Methnocorpusculum aggregans comb. nov. Int. J. Syst. Bacteriol., 39, 109111.
  • 29
    Sogin, M.L. (1990) Amplification of ribosomal RNA genes for molecular evolution studies. In: PCR protocols (Innis, M.A., et al. eds.), pp. 307–314. Academic Press, Inc., New York.