• 1
    Pérombelon, M.C.M. and Kelman, A. (1987) Blackleg and other potato diseases caused by soft rot Erwinias: proposal for revision of terminology. Plant Dis. 71: 283–285.
  • 2
    Aleck, J.R. and Harrison, M.D. (1978) The influence of inoculum density and environment on the development of potato blackleg. Am. Potato J. 55: 479–494.
  • 3
    Kloepper, J.W. (1983) Effect of seed pieces inoculation with plant growth-promoting rhizobacteria on populations of Erwinia carotovora on potato roots and in daughter tubers. Phytopathology 73: 217–219.
  • 4
    Gross, D.C. (1988) Maximising rhizosphere populations of fluorescent pseudomonads on potatoes and their effects on Erwinia carotovora. Am. Potato J. 65: 697–710.
  • 5
    Bakker, P.A.H.M., Bakker, A.W., Marugg, J.D., Weisbeek, P.J. and Schippers, B. (1987) Bioassays for studying the role of siderophores in potato growth stimulation by Pseudomonas spp. in short potato rotations. Soil Biol. Biochem. 19: 443–449.
  • 6
    Voisard, C., Keel, C., Haas, D. and Défago, G. (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351–358.
  • 7
    Thomashow, L.S. and Weller, D.M. (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. triciti. J. Bacteriol. 170: 3499–3508.
  • 8
    Howell, C.R. and Stipanovic, R.D. (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69: 480–482.
  • 9
    Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. and Défago, G. (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant–Microbe Interact. 5: 4–13.
  • 10
    Shanahan, P., O'Sullivan, D.J., Simpson, P., Glennon, J.D. and O'Gara, F. (1992) Isolation and characterisation of an antibiotic-like compound from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353–358.
  • 11
    Vincent, M.N., Harrison, L.A., Bracken, J.M., Kovacevich, P.A., Mukerji, P., Weller, D.M. and Pierson, E.A. (1991) Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl. Environ. Microbiol. 57: 2928–2934.
  • 12
    Rhodes, D.J. and Logan, C. (1986) Effects of fluorescent pseudomonads on the potato blackleg syndrome. Ann. Appl. Biol. 108: 511–518.
  • 13
    Xu, G.W. and Gross, D.C. (1986) Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology 76: 414–422.
  • 14
    Fenton, A.M., Stephens, P.M., Crowley, J., O'Callaghan, M. and O'Gara, F. (1992) Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl. Environ. Microbiol. 58: 3873–3878.
  • 15
    Nowak-Thompson, B., Gould, S.J., Kraus, J. and Loper, J.E. (1994) Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can. J. Microbiol. 40: 1064–1066.
  • 16
    Levy, E., Gough, F.J., Berlin, K.D., Guiana, P.W. and Smith, J.T. (1992) Inhibition of Septoria tritici and other phytopathogenic fungi and bacteria by Pseudomonas fluorescens and its antibiotics. Plant Pathol. 41: 335–341.
  • 17
    Carroll, H., Moënne-Loccoz, Y., Dowling, D.N. and O'Gara, F. (1995) Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugarbeets. Appl. Environ. Microbiol. 61: 3002–3007.
  • 18
    Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning: a Laboratory Manual. Cold Spring Harbour Laboratory, Cold Spring Harbour, N.Y.
  • 19
    Scher, F.M. and Baker, R. (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72: 1567–1573.
  • 20
    Fedi, S., Moënne-Loccoz, Y., Dowling, D.N. and O'Gara, F. (1995) A versatile most probable number system to quantify lacZY-marked pseudomonads present at low cell numbers in the rhizosphere. Lett. Appl. Microbiol. 20: 220–224.
  • 21
    Dowling, D.N. and O'Gara, F. (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. TIBTECH 12: 133–141.
  • 22
    Lindburg, G.D. (1981) An antibiotic lethal to fungi. Plant Dis. 65: 680–683.
  • 23
    Laville, J., Voisard, C., Keel, C., Maurhofer, M., Défago, G. and Haas, D. (1992) Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc. Natl. Acad. Sci. USA 89: 1562–1566.
  • 24
    Maurhofer, M., Keel, C., Voisard, D., Haas, D. and Défago, G. (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82: 190–195.
  • 25
    Pérombelon, M.C.M. and Kelman, A. (1980) Ecology of the soft rot erwinias. Ann. Rev. Phytopathol. 18: 361–387.