• 1
    Jones, J.G. and Simon, B.M. (1981) Differences in microbial decomposition processes in profundal and littoral lake sediments, with particular reference to the nitrogen cycle. J. Gen. Microbiol. 123, 297312.
  • 2
    Skyring, G.W. (1987) Sulfate reduction in coastal ecosystems. Geomicrobiol. J. 5, 295374.
  • 3
    Takii, S. and Fukui, M. (1991) Relative importance of methanogenesis, sulfate reduction and denitrification in sediments of the lower Tama river. Bull. Jap. Soc. Microbiol. Ecol. 6, 18.
  • 4
    Jørgensen, B.B. (1982) Mineralisation of organic matter in the sea-bed – The role of sulfate reduction. Nature 296, 643645.
  • 5
    Cappenberg, T.E. (1974) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. I. Field observations. Antonie van Leeuwenhoek 40, 285295.
  • 6
    Winfrey, M.R. and Zeikus, J.G. (1979) Anaerobic metabolism of immediate methane precursors in Lake Mendota. Appl. Environ. Microbiol. 37, 244253.
  • 7
    Sørensen, J., Christensen, D. and Jørgensen, B.B. (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediments. Appl. Environ. Microbiol. 42, 511.
  • 8
    Balba, M.T. and Nedwell, D.B. (1982) Microbial metabolism of acetate, propionate and butyrate in anoxic sediments from the Colne Point saltmarsh, Essex, UK. J. Gen. Microbiol. 128, 14151422.
  • 9
    Parkes, R.J., Dowling, N.J.E., White, D.C., Herbert, R.A. and Gibson, G.R. (1993) Characterisation of sulfate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction. FEMS Microbiol. Ecol. 102, 235250.
  • 10
    Banat, I.M., Lindstrøm, E.B., Nedwell, D.B. and Balba, M.T. (1981) Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment. Appl. Environ. Microbiol. 42, 985992.
  • 11
    Parkes, R.J. (1987) Analysis of microbial communities within sediments using biomarkers. In: The Ecology of Microbial Communities (Fletcher, M., Gray, T.R.G. and Jones, J.G., Eds.). Cambridge University Press, Cambridge.
  • 12
    Lillebæk, R. (1995) Application of antisera raised against sulfate-reducing bacteria for indirect immunofluorescent detection of immunoreactive bacteria in sediment from the German Baltic Sea. Appl. Environ. Microbiol. 61, 34363442.
  • 13
    Amann, R.I., Ludwig, W. and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.
  • 14
    Stahl, D.A., Flesher, B., Mansfield, H.R. and Montgomery, L. (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54, 10791084.
  • 15
    Devereux, R., Kane, M.D., Winfrey, J. and Stahl, D.A. (1992) Genus- and group-specific hybridisation probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15, 601609.
  • 16
    Risatti, J.B., Capman, W.C. and Stahl, D.A. (1994) Community structure of a microbial mat: The phylogenetic dimension. Proc. Natl. Acad. Sci. USA 91, 1017310177.
  • 17
    Devereux, R., Winfrey, M.R., Winfrey, J. and Stahl, D.A. (1996) Depth profile of sulfate-reducing bacterial ribosomal RNA and mercury methylation in an estuarine sediment. FEMS Microbiol. Ecol. 20, 2331.
  • 18
    Peck, H.D. (1959) The ATP dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. USA 45, 701708.
  • 19
    Takii, S. (1989) Methanogenesis in sediments of the polluted lower reaches of the Tama river. Jpn. J. Limnol. 50, 235246.
  • 20
    Bryant, M.P., Campbell, L.L., Reddy, C.A. and Crabill, M.R. (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilising methanogenic bacteria. Appl. Environ. Microbiol. 33, 11621169.
  • 21
    Parkes, R.J., Gibson, G.R., Mueller-Harvey, I., Buckingham, W.J. and Herbert, K.A. (1989) Determination of the substrates for sulfate-reducing bacteria within marine-estuarine sediments with different rates of sulfate reduction. J. Gen. Microbiol. 135, 175187.
  • 22
    Tsai, Y.-L. and Olson, B.H. (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57, 10701074.
  • 23
    Lawongsa, P., Inubushi, K. and Wada, H. (1987) Determination of organic acids in soil by high performance liquid chromatography. Soil Sci. Plant Nutr. 33, 289302.
  • 24
    Purdy, K.J., Embley, T.M., Takii, S. and Nedwell, D.B. (1996) Rapid extraction of DNA and rRNA from sediments using a novel hydroxyapatite spin-column method. Appl. Environ. Microbiol. 62, 39053907.
  • 25
    Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, Laboratory Press, Cold Spring Harbor, NY.
  • 26
    Widdel, F. and Bak, F. (1992) Gram negative mesophilic sulfate-reducing bacteria. In: The Procaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Identification, Application (Balows, A., Trüper, H.G., Dworkin, M., Harder, W. and Schleifer, K.-H., Eds.). Springer Verlag, New York.
  • 27
    Stahl, D.A. and Flesher, B. (1988) Applications of ribosomal RNA sequencing to studies of microbial ecology. Gray Freshwater Biological Institute: Summer course July 11–22, 1988, 1st edn. Gray Freshwater Biological Institute, USA.
  • 28
    Amann, R.I., Stromley, J., Devereux, R., Key, R. and Stahl, D.A. (1992) Molecular and microscopic identifications of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58, 614623.
  • 29
    Purdy, K.J. (1996) The Use of 16S rRNA-targeted Oligonucleotide Probes to Study the Ecology of Sulphate-reducing Bacteria. Ph.D Thesis, University of Essex, Colchester.
  • 30
    Moran, M.A., Torsvik, V.L., Torsvik, T. and Hodson, R.E. (1993) Direct extraction and purification of rRNA for ecological studies. Appl. Environ. Microbiol. 59, 915918.
  • 31
    Moré, M.I., Herrick, J.B., Silva, M.C., Ghiorse, W.C. and Madsen, E.L. (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of DNA from sediment. Appl. Environ. Microbiol. 60, 15721580.
  • 32
    Kemp, P.F., Lee, S.-H. and LaRoche, J. (1993) Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl. Environ. Microbiol. 59, 25942601.
  • 33
    Rosset, R., Julien, J. and Monier, R. (1966) Ribonucleic acid composition of bacteria as a function of growth rate. J. Mol. Biol. 18, 308320.
  • 34
    Schaechter, M., Maaløe, O. and Kjeldgaard, N.O. (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 592606.
  • 35
    Zar, J.H. (1996) Biostatistical Analysis, 3rd edn. Prentice-Hall, London.
  • 36
    Boudreau, B.P. and Westrich, J.T. (1984) The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochim. Cosmochim. Acta 48, 25032516.
  • 37
    Ingvorsen, K., Zehnder, A.J.B. and Jørgensen, B.B. (1984) Kinetics of sulfate and acetate uptake by Desulfobacter postgatei. Appl. Environ. Microbiol. 473, 403408.
  • 38
    Mitchell, G.J., Jones, J.G. and Cole, J.A. (1986) Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Arch. Microbiol. 144, 3540.
  • 39
    Dannenberg, S., Kroder, M., Dilling, W. and Cypionka, H. (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol. 158, 9399.
  • 40
    Dalsgaard, T. and Bak, F. (1994) Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from a rice paddy soil: Sulfide inhibition, kinetics and regulation. Appl. Environ. Microbiol. 60, 291297.
  • 41
    Miller, D., Brown, C.M., Pearson, T.H. and Stanley, S.O. (1979) Some biologically important low molecular weight organic acids in the sediment of Loch Eil. Mar. Biol. 50, 375383.
  • 42
    Nedwell, D.B. (1984) The input and mineralization of organic carbon in anaerobic aquatic sediments. Adv. Microbiol. Ecol. 7, 93131.
  • 43
    Banat, I.M. and Nedwell, D.B. (1983) Mechanisms of turnover of C2-C4 fatty acids in high-sulphate and low-sulphate anaerobic sediments. FEMS Microbiol. Lett. 17, 107110.
  • 44
    Voordouw, G., Voordouw, J.K., Jack, T.R., Foght, J., Fedorak, P.M. and Westlake, D.W.S. (1992) Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome sampling. Appl. Environ. Microbiol. 58, 35423552.
  • 45
    Hardy, J.A. (1981) The enumeration, isolation and characterization of sulphate-reducing bacteria from North Sea waters. J. Appl. Bacteriol. 51, 505516.
  • 46
    Postgate, J. (1984) The Sulphate-reducing Bacteria, 2nd edn. Cambridge University Press, Cambridge.
  • 47
    Voordouw, G., Voordouw, J.K., Karkhoff-Schweizer, R.R., Fedorak, P.M. and Westlake, D.W.S. (1991) Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl. Environ. Microbiol. 57, 30703078.
  • 48
    Taylor, J. and Parkes, R.J. (1985) Identifying different populations of sulfate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J. Gen. Microbiol. 131, 631642.
  • 49
    Abdollahi, H. and Nedwell, D.B. (1980) Serological characteristics within the genus Desulfovibrio. Antonie van Leeuwenhoek 46, 7383.